NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESS

EXECUTION LEVEL JAVA SOFTWARE AND
HARDWARE FOR THE NPSAUTONOMOUS
UNDERWATER VEHICLE

by

Migud Arnddo Ayda

September 2002

Thess Advisors: Don Brutzman
ManTak Shing

Approved for public release; distribution isunlimited

THISPAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 2002 Master’s Thesis

. TITLE AND SUBTITLE: Execution Level Java Software and Hardware for the | 5. FUNDING NUMBERS

NPS Autonomous Underwater Vehicle

6. AUTHOR(S) Miguel Arnaldo Ayaa

7. PERFORMING ORGANIZATION NAME AND ADDRESS 3. PERFORMING ORGANIZATION
Nava Postgraduate School REPORT NUMBER
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME AND ADDRESS 10. SPONSORING / MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public distribution; distribution is unlimited

13. ABSTRACT
Autonomous underwater vehicles (AUVs) have a great potential use for the United States Marine Corps and United

States Navy. When performing amphibious operations, underwater mines present a danger for the forces going ashore. The
use of underwater vehicles for the detection of this mines and signaling to the Amphibious Ready Group is very attractive.
With advancements in hardware and object oriented language technology, more complicated and robust software can be
developed. The Naval Postgraduate School Center for AUV Research has been designing, building, operating, and researching
AUVs since 1987. Each generation of vehicles has provided substantially increased in operationa capabilities and level of
sophistication in the hardware and software respectively.

With the advancement in real-time computer languages support, object oriented technology, and cost efficient and
high performance hardware, this thesis lays the foundations to develop a software system for the execution level using the Java
language. We look into the Java Redl-Time specifications and extension to familiarize with the capabilities of Java for real-
time support, and study Java boards and its application for embedded real-time systems. We developed an object-oriented
design for the execution level control software and implemented the design in Java. A testing phaseis still under work.

14. SUBJECT TERMS Software Engineering, Autonomous Underwater Vehicles, AUV, Java, Java | 15. NUMBER OF
Board, Embedded Java, Readl-time Software, Real-time Java, UML PAGES
280
16. PRICE CODE
17.SECURITY 18. SECURITY 19. SECURITY 20.LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Sandard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THISPAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution isunlimited
EXECUTION LEVEL JAVA SOFTWARE AND HARDWARE FOR THE NPS
AUTONOMOUSUNDERWATER VEHICLE

Migud A. Ayda
Captain, United States Marine Corps
B.SM.E., University of Puerto Rico, 1996

Submitted in partid fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author:

Migud A. Ayda

Approved by:

Don Brutzman, Thess Advisor

ManTak Shing, Thesis Co-Advisor

Chris Eagle, Chair
Department of Computer Science

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Autonomous underwater vehicles (AUVS) have a great potentid use for the
United States Marine Corps and United States Navy. When performing amphibious
operations, underwater mines present a danger for te forces going ashore. The use of
underwater vehicles for the detection of this mines and dgnding to the Amphibious
Ready Group is very atractive. With advancements in hardware and object oriented
language technology, more complicated and robust software can be developed. The
Nava Podgraduate School Center for AUV Research has been designing, building,
operating, and researching AUV's since 1987. Each generation of vehicles has provided
subgantidly increased in operational cgpabiliies and levd of sophidication in the
hardware and software respectively.

With the advancement in red-time computer languages support, object oriented
technology, and cogt efficient and high peformance hardware, this thesis lays the
foundations to develop a software system for the execution leve using the Java language.
We look into the Java Red-Time spedifications and extenson to familiarize with the
capabilities of Java for red-time support, and study Java boards and its gpplication for
embedded red-time systems. We developed an object-oriented design for the execution
level control software and implemented the design in Java. A teding phase is ill under

work.

THISPAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

INTRODUCTION ...ttt se sttt sae e s sesbesresseeseeseesensessessessessesns 1
A INTRODUCTION.....ooiiieieeie sttt e e e te st ese e s e saessessesresnenneas 1
B MOTIVATION ittt sttt sae b e ens 3
C. OBJIECTIVES ...ttt st 4
D. S OO] = S 5
E THESIS ORGANIZATION ..ottt 5
RELATED WORK ..ottt sttt nnesne e 7
A. INTRODUCTION ..ottt eeeeeeesee e ste s e s e sseesaesseseessessessessessens 7
B. NAVAL POSTGRADUATE SCHOOL ARIESAUV ... 7
1 1S o T o] § o o PO 7
2. ARIES SOftWATE ..ottt e 7

B. VIRTUAL REALITY MODELING LANGUAGE (VRML) AND
EXTANSIBLE 3D (X3D) GRAPHICSFOR ARIES........cccooovininiiineriene 8
a. EXECULION COUE.......coiiiieiiieieeesee e 9
b. DYNamMICS COUE.........eiuiriieieieeerie et 11
C. SUMMARY ettt bbbttt bbb 12
PROBLEM STATEMENT ..ottt s nne s 15
A. INTRODUCTION ..ottt ee ettt saesae s saesneeneens 15
B. PROBLEM STATEMENT ...oooiie et 15
C. WHY JAVA AND JAVA BOARD? ...ttt 15
D. (10 AN S TSP 17
E. 1 1Y N = 17
SOFTWARE ENGINEERING......cccooi ittt 19
A. INTRODUCTION ..ottt st sae st sse e e s 19
B. SOFTWARE DEVELOPMENT CYCLE ..o 19
1. TheWaterfall Model.........ccoooviiiriie e 20
2. TheSpiral MOdEL........ccooiiece e 21
C. ANALY SIS AND SPECIFICATIONS......ooeeecese e 22
1. Requirement Elicitation and ANalySiSccccvvvirinieninenenenenins 22
2. Softwar e Requirements Specifications..........cccceeveveeveveececceecneenee, 23
D. SOFTWARE DESIGN ..ot s 24
1. DESIGN SEEPS ...ttt 24
a. Function DeCoOMPOSITIONccoceerieeieeieereee e 25
b. High Cohesion and Low Coupling.......ccccveveeiievcieeiieccieenen, 25
C. Data DEfiNITION........ccceveerieieee e 26
2 USE CaASES......eeireeiee e n e s 26
a SIS .ttt e n e ene e 27
b D o o L= ST 30
C. ACT . s 32
d. (@00 11 o ISR 34
3 (@Y =T | =T £ 35

a. Conceptual Modelccooeeeeiieeceee e 35

b. SequENCE DIagramcoceeieieeriere e e 38

E. SOFTWARE ARCHITECTUREci et 41
1. S 11 RSSO 42

2. D= oo [T 43

3. Y o 44

4. CONETOl .t 44

G. SOFTWARE DEVELOPING TOOLS. ...t 45
1 TOGELNEI ® ... 45

a. (1Y 1V o0 = | T S 47

b. Program Building........ccccoeeieiieie e 50

C. Quality Assurance and MEriCS......coceveerenieeneenenee e 52

d. Documentation GeNerationcceeceerueeeereereeseeseeeseeseenens 53

2. SUN'SFOrteTOr JAVA.......ciiiieriieieiee e 55

H. SUMMARY ettt st sttt se e aentesaessennenreens 55
V. REAL-TIME JAVA AND JAVA BOARDoooeerese ettt anens 57
A. INTRODUCTION ..ottt st s 57
B. REAL -TIME JAVA ..ttt nne s 58
1. Challengesin thecurrent Javalanguage.........ccceoevenenenenencnnne 61

a Concurrency and Synchronization.............ccceeeeeeeceeseeseesnenn 63

b. Memory Managementcceeveeeereeeieeseese e 64

C. ASYNCATONY ...t 64

d. TN ettt et reenre e 64

1 Real-Time Specification for Java (RTSJ) ..cccocceevvevevieeveececeeceenn 65

a. Concurrency and Synchronization.............cccoeeeveeeeneeseeseenn 67

b. Scheduling and Prioriti€s.ccoivvernenieeieesesese e 69

C. SYNCNIONIZALION ... 70

d. Memory Managementccceeveeveecieesee e 70

e. ASYNCNTONY .. 72

f. TimME aNd TIMES ..o 73

C. JAVA BOARD. ..ottt sttt st nbe e 74
1. AJileaJ-100EVBc.oooeece et e 74

a. aJ-100EVB FEAtUIES.......eeeeieiee e 75

b. Programming in the aJ100EVBccccoevveveveececceeeene 77

2. ISy O 1 o USSR 79

D. SUMMARY ettt st se e e e e aenaesaennesnenns 80
VI. EXECUTION JAVA SOURCE CODE DESCRIPTIONccccecriiiiinirniniesesieneens 81
A. INTRODUCTION ..ottt st sae st sse e e s 81
B. EXECUTION JAVA CODE PACKAGESAND CLASSEScccoveveeae 81
1. SIS ettt ettt b b nreens 82

2. D<o Lo = RSSO 82

a D o o L= SR 82

b. PaISES ... s 83

3. o TSRS 83

4, (@001 8 o] USRS 83

a. CONTION ..ot e e e e e e e e e 83

b. Control_CoeffiCIENtS........cccvreeieeeeeee e 83
5. INPUE_OULPUL ... 84
a. 1 84
b. Commands_Queueand List_Node.........cccocceverieneeneniinnene 84
6. VA= o = TS 84
7. NN o S 84
a. NetWwork_ ConNECLIONccecieeiiieiieciee e 84
8. GlODAIS. ... 85
a. EXECUtiON_FlagS......cccovieiieiesiee e 85
0. (D=1 = o 000>] Lo TS 85
a. KalMan.... ..ot e 85
10. EXECULION......oiitie ettt st sre e e e e eae e 85
C. EXECUTION JAVA CODE INTEGRATIONcccoiieeeeeeesiece e 85
D. SUMMARY ettt st sttt se e aentesaessennenreens 88
VII. EXECUTION JAVA CODE TESTINGocoeieeeere e 89
A. INTRODUCTIONot see ettt nre e nnee e 89
B. COMPONENT TESTING ...ttt 89
1. VENICIE ClaSS......ccvieee et 89
2. Network_Connection ClasS.........cocecveeieeiie e 90
3. EXECULION_FlagS.......coivieie et 90
4, Commands_Queueand List_ NOde........cccceveriinieninin e 20
5. PaAF SEY ... 90
6. 1 OSSN 90
7. Control_CoeffiCIENtS......cooeiieeeee s 91
8. 1= o [0 = S OS 91
0. (D2 1= 00 = S] o 92
10 S 1S = TS 92
I o SO 93
12. (= [= o TS 93
T S I 07 o - | SRS 93
14. ST L1000 _SONAYceieieiueeeieeseeesteeeeeereeseeeseeeseeesseesseesseesaeeeseesneeenseeas 93
15. (@]] (o OSSPSR 93
16. D= o U1 o o S 9
C. SUM M ARY ettt st sttt se e e e naeseessesbenreans 96
VIIl. CONCLUSIONSAND RECOMMENDATIONS FOR FUTURE WORK......... 97
A. INTRODUCTIONot see ettt nre e nnee e 97
B. RESEARCH CONCLUSIONS. ...ttt 97
1 Arethe GOAISIMEL?......oo e 97
2. EXeCution JAVva COUE.........cccveeieeeiee e see e 98
3. REAI-TIME JAVA.......coivicee ettt 98
4, JAVA BOAId ... e 99
C. FUTURE WORK RECOMMENDATIONS.......cooeeeeeeeeeeeese e 99
D. SUMMARY oottt sttt sttt et s e s seeteaneesaeeneenee e 100

APPENDIX A EXECUTION JAVA SOURCE CODE. ..o 101

A. SENSE.JAVA e 101
B. DECIDE.JAVA L et 114
C. ACT.IAVA 139
D. CONTROL.JAVA e 145
E. FOLIAV A e e 182
F. COMMANDS QUEUE.JAVA ... 193
G. PARSER.JAVA ..o 196
H. LIST_NODE.JAVA e 202
l. DATA_PROCESSING.JAVA ... 204
J. VEHICLE.JAVA L. 208
K. NETWORK_CONNECTION.JAVA ... 227
L. EXECUTION_FLAGS.JAVA ..ot 231
M. ST1000_SONAR.JAVA ... 237
N. ST725_SONAR.JAVA ..o 248
O. KALMANJAVA et e 250
APPENDIX B COMPACT DISK ..o 257
A. INTRODUCTION ..ottt 257
B. CD CONTENTS ...t 257
LIST OF REFERENCESooi i 259
INITIAL DISTRIBUTION LIST ..o 261

Figure 1.
Figure 2.
Figure 3.

Figure4.
Figure5.

Figure 6.
Figure7.
Figure 8.
Figure 9.

Figure 10.
Fgure 11.
Figure 12.
Figure 13.

Figure 14.

Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

LIST OF FIGURES

Bluefin Robotics AUV recovered during Heet Bdtle Exercise Jlulig,

Camp Perdleton, CA, JUly 2002.cceiveiereereeieseese e e sre e see s eae e 1
Remus AUV ready to be launched during Heet Batle Exercise Juliet,

Camp Pendleton, CA, JUlY 2002.cooeeiieiieeiie e esee e see e seesre e 2
Nava Postgraduate School ARIES AUV ready to be launched off the

coast of The Azores, Portugal, SUMMEer2001.ccccceveereeieeniereeeeseeseeeeens 3
Virtual AUV model of ARIES [Gruneisen 2002]ccoevvveieeiiecireesee e, 9
X3D-Edit Graphical User Interface for developing 3D objects and scenes

USING VRML .o 10
Structure of the Execution Level Software/Hardware [Marco 96].................. 12
The Waterfall model for software development [Leffingwell & Widrig] 20
The Spiral model for software development [Leffingwell & Widrig]............. 21
Sense Use Case as UML Diagram.........cccceveeveeieeneesesee e see s eee s 27
Decide Use Case as UML diagram.........ccceeveeiieiiieeiie e cie s sine e 30
Act Use Case as UML diagram.........ccoeeeeereneeiienesiese e 32
Control Use Case as UML diagram.........ccccceeveeeeeneenesieeneesesee e eeeseesseennens 34
NPS AUV Conceptual Modelc.cooieiiiiiieiieciecse e 37
SEQUENCE DIBGIAIM ...ttt 39
Execution-Dynamics Sequence Diagram...........cccoevererenenienieenesese e 40
SENSE ATCHITECIUNE ...ttt 42
DeCide ATCHITECIUIE ..ottt 43
o N 1] (= o LU = 44
Control ATChITECIUNEc.veeuieieeieeiie e 45
Together Control CENLENc.coiueiiieie e 47
Class diagram as part of UML diagrams supported by Together 48
Class diagram as part of UML diagrams supported by Together 49
Together programming tOOIS.........ccveiiiiiieiie e 51
Together runtime OUtPUE WINAOW.coiriieiieieriesereeeeeeee e 52
Together Metrics and Audit capabilities.........ccoovverevininencce e 53
Together documentation generation to0lccceeeeveeieveevecce e 54
AUV document generated using TOGELhErcooovreieeiiie s 54
adil€SAJI00EVB DOAId........cceeiieieceesie e 76
JemBuilder graphical interface at the building phase.........cccccceeveeeiiccieeee 78
Charade loading and executing software toolcccceeveeeceeiee e s, 79
Required format for the file control.constantS.iNPutcccceeeierencieneneens 86

X

THISPAGE INTENTIONALLY LEFT BLANK

Xii

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

LIST OF TABLES

Sense Use Case Typical Course of ACHON.......ccocvveereniernieneeee e 29
Decide Use Case Typical Course Of ACHON.........cccevererererieneenesese e 31
Act Use Case Typical Course 0f ACHON........ccoceeveeieceesie e 33
Control Use Case Typical Course of ACHON.........cccceevieeiiesieesee e 35
Portion of mission.output.telemetry file written by execution Java code........ 95
Portion of mission.output.telemetry file written by execution C code............. 95

Xiii

THISPAGE INTENTIONALLY LEFT BLANK

Xiv

ACKNOWLEDGMENTS

| would like to thank my parents, for unconditiond support in al my endeavors,
to my wife Dasy and son Luis Migud for ther sacrifices, undersanding, and support
during the last two years.

THISPAGE INTENTIONALLY LEFT BLANK

INTRODUCTION

A. INTRODUCTION

Autonomous underweter vehicles have a great potentia use for the United States
Marine Corps and the Navy. When performing amphibious operations, underwater mines
present a danger for the forces going ashore. The use of underwater vehicles for the
detection of this mines and sgnding to the Amphibious Reedy Group is very éttractive.

Research on AUV has been of interest for quite some time and is the focus of

effort for many groups in many universties private inditutions and the government
(Figures 1, 2 and 3).

e o - Fxn "o

Figurel. Bluefin Robotics AUV recovered during Heet Battle
Exercise Juliet, Camp Pendleton, CA, July 2002.

The exising AUVs a NPS (Figure 3) are robots for student research in shdlow
water senang and control. The AUV is controlled by three layered software architecture
known as The Rationd Behavior Moded (RBM) [Byrnes 96]; execution, tacticd and
drategic layers respectively. The execution layer, studied in the scope of thisthess,

- i

e Ol ' . e UL Y

Figure2. Remus AUV ready to be launched during Feet Bdtle
Exercise Juliet, Camp Pendleton, CA, July 2002.

corresponds to hard real-time reective control. This layer provides maneuvering control
of plane surfaces and propdlers. Interface with the different sensors aboard the vehicle is
dso provided through the layer. The execution leve integration includes control of
physicd devices, sense-decide-act, reactive behaviors, communications connectivity, a
misson script language, and stand-alone robustness in case of loss of higher software
leves.

The exising NPS AUV control software has been written in C [Marco 96]. The

purpose of the execution level software is to provide control commands to the different
actuators onboard the vehicle. The execution levd code is the heart of the vehicle in
which provides the mechaniam to guide the vehicle and execute missons successully.

B. MOTIVATION

Virtua environments provide a redigdic arena for the testing and development of
future vehice technologies [Byrne 98]. Amphibious operations conducted by the
Navy/Marine Corps team faces numerous dangers in littora waters. The presence of
underwater mines in shadlow waters in the event of an amphibious operaion conditutes a
red danger for the forces going ashore. Numerous research efforts have been directed
towards the area of detecting, identifying and neutrdizing underwater mines. The use of
autonomous underwater vehicles has been one of the research aress that interest the
United State Navy and Marine Corps. The Nava Posigraduate School Center for
Autonomous Underwater Vehicle (AUV) Research have developed a series of AUVs
with this purpose and command and control between vehicles (Figure 3).

- b e, : / i |
Figure3. Nava Postgraduate School ARIES AUV ready to be

launched off the coast of The Azores Portugd,
Summer2001.

With the advent of the Internet, the concept of collaborative planning, execution of
missons using the Internet darted to take shgpe. With the introduction of Java as a
programming language, those concepts became redity as Java took over as one of the
World Wide Web programming languages. The characteristics of Java as highly portable
and plaform independent program environment offered good advantages for the
trangtion of the NPS AUV software into Java The visudization in 3D interface of the
AUV usng Virtud Redity Modding Language was the prime candidate to proceed in
this approach with the follow-on of the entire trangtion of the execution level code.

With the advancement in red-time computer language support, object-oriented
technology and cost efficient and high performance hardware, a different gpproach for a
new generation of AUV hardware and software can be attempted. A new underwater
vehide with Java-based architecture to improve rdiability and verifidbility can be
dudied. Java hardware for in-water hardware will provide fast performance, low power
consumption and improved endurance. Accesshility to both low-level and advanced
Java Applications Programming Interfaces (APIs) will make the software robust and easy
to maintain, contributing to low maintenance cost. Perhgps most importantly to NPS,
dudents will be able to tet and devdop AUV software compatible on any other
computer, a home or in the lab.

C. OBJECTIVES

The objectives of this thess are to provide sound software engineering practices
in the trangtion, design and development of the execution level code for the NPS AUV.
These objectives can be achieve by:

Providing a good st of software requirements specification usng UML and

other software engineering practices.

Building a Java based execution levd tha is efficiently capable of beng
interchangesble with virtud world without any effect, in other words, that the
AUV software could not notice the difference if it is operating in the water or
the virtud world.

Preparing execution level software for Red-time Java migrdion and Java
Board hardware integration solution.

4

D. SCOPE

The scope of the thess is focused on the execution level code of the NPS AUV
specificaly: the sudy, understanding and therefore the trandaion of the C code into
Java. Since the execution code is very complicated and involves numerous interfaces
with hardware, the virtud world has been sdected as the fird trandtion bridge. From
there the code will be tested for correct operation. In future work rea world code will be
incorporated. That interfaces the Java board with the actual AUV hardware components.

E. THESISORGANIZATION

Chapter 11 examines previous work on the ARIES AUV, spedificdly in the virtua
world. Execution level code and the dynamics code are aso described.

Chapter 111 presents the problem statement, gods for the thess, and overview of
Java as a computer language and why Java is useful for an autonomous underwater
vehide

Chapter 1V presents the Software Engineering requirements for the thess
problem domain, congraints, issues and the software architecture for the execution leve
implementation. This is supported by Unified Modding Language (UML) diagrams and
Use Cases.

Chapter V discusses the Java board as a candidate hardware solution. The
implementation of Java boards and Red-time Java for embedded systems are explored in
details.

Chapter VI provides a close look to the source code and an explanation of the

classes.

Chapter VII presents desgn methodology for testing of the source code and the
results of those tests.

A summary, conclusons and future work recommendations are provided in
Chapter VIII.

Appendices provide download information and source code summary.

THISPAGE INTENTIONALLY LEFT BLANK

[I. RELATED WORK

A. INTRODUCTION

Research on autonomous underwater vehicles has been growing during the last
decade. With advancements in red-time computer language support, object-oriented
technology and cod-dfident high-performance hardware, development of more
sophidicated vehicle software is now possble This chapter summarizes pertinent
previous work on the current NPS AUV and its virtua world software.

B. NAVAL POSTGRADUATE SCHOOL ARIESAUV

1 Description

The exiging AUVs a NPS ae robots for student research in shallow-water
sensng and control. The AUV is controlled by three-layered software architecture known
as The Rationd Behavior Modd (RBM) [Byrnes 96], comprisng execution, tactical and

drategic layers repectively.

The Acoudic Radio Interactive Exploratory Sever (ARIES) AUV s
approximately two meters long weighing approximately 500 pounds. It was designed to
operate neutraly buoyant. It is designed for communications server and Command and
Control research. The vehicle is dso used to develop low-cost underwater navigation
cgpabilities usng Differentid Globa Postioning System (DGPS) when surfaced. It has a
top speed of approximately 4 knots, an operating depth of approximately 50 meters, and
an endurance of up to 4 hours. It has bottom following, track following, station keeping
and bottom dtting capability. 1t communicates through acoustic modem up to a range of
700 meters. Navigation means ae Acoudic Ground Locked Doppler, Inertia
Measurement Unit (IMU), Compass, Dead Reckoning, and Globad Pogtioning System
(GPS) correction when surfaced. Thus ARIES vehicle can operates as a shallow-water
communicetions server vehicde with a DGPS and a doppler aided IMU / Compass
navigation suite.

2. ARIES Software

The current ARIES software architecture is designed to operate usng a single
computer processor or two, independent, cooperating processors linked through a

network interface. Splitting the processng between two computers can sgnificantly
improve computationd load balancing and software segregation. Each processor assumes
different tasks for misson operation. Both computers run the QNX red-time operating
system using synchronous socket sender and receiver network processes for data sharing
between thetwo. Inwater ARIES software iswritten in C and C++ languages.

All vehicle sensors ae interrogated by separate, independently controlled
concurrent processes, and there is no redriction on whether the processes operate
gynchronoudy or asynchronoudy. Since various sensors gather data at different rates,
each process may be talored to operate at the acquisition speed of the respective sensor.
Each process contains a unique shared memory data sructure that is updated at the
specific rate of each sensor. All sensor data are accessible to a synchronous navigetion
process through shared memory that is a main feature of the software architecture [Marco
96].

A virtud world has been developed as an ad to visudization of vehicle behavior
a wedl as for red-time hardware in the loop, control code testing and evauation
[Brutzman 94].

B. VIRTUAL REALITY MODELING LANGUAGE (VRML) AND
EXTANSIBLE 3D (X3D) GRAPHICSFOR ARIES

Underwater vehicles robots are unique. They operate in harsh environments for
extended period of time. Misson planning, rehearsd and playback in a controlled
physics-based environment is needed to preview an expected behavior of the vehicle in
the water.

Virtud Redity Modding Language (VRML) provided the necessary tools to
develop a virtud AUV [Brutzman 94]. With the creation of a networked virtuad AUV
(Figure 4), visudization of misson planning, rehearsa, and misson andyss can be
performed.

The deveopment of the virtud AUV was done usng X3D-Edit authoring tool
developed by Don Brutzman, Nava Postgraduate School (NPS), Monterey, CA (Figure
5). The software expressed the geometry and behavior capabilities of the Virtual Redity
Modding Language (VRML 97) using the Extensble Markup Language (XML). X3D-

Edit is an Extensble 3D (X3D) graphics file editor that uses the X3D Document Type
Definition (DTD) in combination with Sun’s Java, IBM’s Xeena XML editor building

|
Wjmes e it

Figure4. Virtuad AUV modd of ARIES [Gruneisen 2002]

gpplication and an editor profile configuration file. X3D-Edit enables smple eror-free
editing, authoring and vdidation of X3D or VRML scene-graph files.
a. Execution Code

The primary objective of the execution code is to perform red-time data
acquigtion and control of the vehicle The execution levd software is the heart of the
autonomous underwater vehicle. The vehicle execution software is desgned to operate
both in the virtud world and in the red world. While senang in the virtud world,
digtributed hydrodynamics and sonar models fill in the respective tdlemetry vector vaues.
While sendng in the red world, actud sensors and their corresponding interfaces fill in
those telemetry vector values. In either case, the rest of the execution code, which dedls
with command parsing, dynamics control, sensor interpretation, etc. is unaffected

[Brutzman 94]. The interaction of the software with the different actuators and hardware
9

aboard the vehicle makes the execution level software a very important one. With a hard

real-time deadline of 0.1 seconds per sense-decide-act loop, the execution level code

W5 30-Coit scamve e wditer {R0d-comp e prolie sl |
File B0l moet Seleeien Giammar Tools i
Oj=iP| SRR = | =] &fx| ko] 8|8|a %] Rt «|+)|-] =|an] KEE] 1|

[B ool | Evpeirems R VLI | (it EY Bl 1S b [Tl
Geofpadini [a
I!'Ic-‘!l-h'ﬂ:": | ﬂﬁu:\-;:o‘;e T. B [
Fell e J v Moy = Wewpont descriphan Parege rhive, pazbion: 10 130 100, arientston 0 5713077 2-0.2718-1 108 J
I =] Wgaap ot duargrion Froevl, pocdion: -1 0§ 250, odentntion 1 000
< ideponi L Qs MR, posNon F000, dKTE0E D1 0 137m
-I_- A, ﬂ &F Weennint descripion L preiiare =75 0 0, adentabon 01 0-1 5TIE
-L] e ot desgmian Ton, poakion 0 2500, erréxinnc i 0 -1 570
| <} i ot discrpian Briom, pesitar 0-150 0, oienalion 1001 5T1E
. BchEron.., i Eekoreund skiCoior 00308
P Bistosa. =100 Group COEF to_pan
Tl B S e . = :F":amouu DEF: fop_fsaiy
L] o il ol " Rrriziop_ by e
''.'1 =2 Trmeiomn: DEF: Pon_werteal_fe, bareision 71 8981 30, miwberc | 00 15708, cenier 000
%cm g inling uit® Mkl nwd
e Crlztinipzele. ;fnm.um CEr. fani_vrticsl_in_prokciion, renalekan 7313 0, mistion: 1 0 030418 oanke 000
L] o mine uit” K isTn_p lection s
-ﬂw | = *T.:..-mm CEF rd el &_i e
[Scarm s NG L™ T T I N T
= Tare F-mg e ing cardar-1017
mme | vaw | Coll i Sy bt
GEF Ronar u " 3
bicun dEaERg L. <Homas] Az Tou iBarcar. DEF: Scross_ Dpsi 1aw_loich =
bounifog aHonar R o 2 TRV i
I Cun 4 Gl whirw . s HDnas il I --]J |
boun {kbwigalia . =Kpmas

ficid Al g bl < Ridss = Froes s A5 Zucs sl
AR R Hpran
TR TR T
ek imFrom__ sKore»
reakTIFram. <homis

Missagic

Figure5. X3D-Edit Grephica User Interface for developing 3D
objects and scenes using VRML

reads commands, make decisons and act accordingly sending the gppropriate instructions
to the different actuators while monitoring the control. It assures the interface between
hardware and software. Its tasks are to maintain the physica and operational Stability of
the vehicle, to control the individua devices and to provide data to the tacticd level. The
execution code corresponds to hard red-time reactive control. This layer provides
maneuvering control of plane surfaces and propdlers. Interface with the different sensors
aboard the vehicle is provided through the layer. The execution leve integration includes

the physica devices control, sense-decide-act, reactive behaviors, connectivity, a misson

10

script language, and a stand-aone robustness in case of loss of higher levels. Figure 6
shows the exigting execution level software/hardware structure.

b. Dynamics Code

The effects of the surrounding environment on a robot vehicle are unique
to undewater doman. Undersanding these forces is a key requirement in the

development and control of the vehicle behavior.

The dynamics program Java source code is designed to substitute for the
naturd environment effects on the AUV. It dso provides an edimate of the AUV
behavior in the waer by peforming a series of cdculations usng physcd lawvs By
communicating with the execution code via a network socket, the telemetry data or state
vaiadles of the vehicle are collected. Dynamics goply severd equations of motions,
forces, and accelerations to the hydrodynamics modd and the data recaeived from the
execution code. The data produced by dynamics is then sent back to execution, where it
is andyzed and appropriate action commands are then given to the respective actuators
based on that data This is a very important and difficult part in the red-time amulation

in avirtud world.

The 3D visudization dgorithms in the dynamics code dlow the update of
3D scenes developed usng X3D-Edit. These scenes are viewed through an internet
browser usng a plug-in VRML viewer. Many VRML plug-ins are avalable as 3D

browsers, including:

Xj3D Open Source Browser: http://www.web3d.org/TaskGroups/source/x| 3d.html

Nexternet: Pivoron player: http://www.nexternet.com

11

Cosmosoftware: Cosmoplayer: http://ca.com/cosmo

Parale Graphics: Cortona player: http://www.parallel graphics.com/cortona

Blaxxun: Contact browser: http://mwwww.blaxxun.com

i FlA MWEER SUPPLIES
Pl,:mPler::iLlil:m caro [~ cace b
Ry % C [w
i B FHRUSTER PWR

SCREW PWH
RONAR PWH

SONAR
GYROS, FINS

H DACs =8 T0O MOTOR

BREAD SERVD

A AMPS

SOCKET FOR ; L
SCRIFTS TIMER =& T FINS

AND FLAGS 1 CARDS

—= FROM SFEED
WHEELS ¢
SPEEL SENSOR

FROM GYROS
FROM DEFTH

CELL
SERIAL bl ST SOMNAR
REACTIVE 143 A
OYERRIDES
IF ANY AND SEND : 3 e DivE TRACKER
EERIAL CONMS
bt FARALLEL

CARD et 14 RIT
DIRECTIONAL

WRITE DATA TO GYRO

MEMORY / OR TO : eriepner [COMMUNICATION
) § Gy SOCKETS, A AND B

SOCKET A DH B . Lgigenle

M TOFROM SUN

; Cards

CHECK TIME J lardware Card
WAIT Saftwiare
Drivers

Saftware Lantrol
Wladules

Figure6. Structure of the Execution Leve Software/Hardware
[Marco 96]

C. SUMMARY

The development of autonomous underwater vehicles encompasses a numerous
chdlenges. A lot of effort has been dedicated to developing tools that might make the

12

process of research, developing and testing of AUV a lot faster, safest, and economicd.

As presented in this chapter, the Nava Postgraduate School ARIES AUV is a product of
years of research and development. With the creation of the virtud environment for the
vehide, misson planning, visudization, rehearsa, playback, and andyss can be
achieved more quickly. The cgpabilities for usng the virtud world interface with the
physica world information provide an excdlent combination for post-misson andyss

13

THISPAGE INTENTIONALLY LEFT BLANK

14

[Il. PROBLEM STATEMENT

A. INTRODUCTION

Autonomous underweter vehicles have a great potentia use for the United States
Marine Corps and the Navy. When performing amphibious operations, underwater mines
present a danger for the forces going ashore. The use of underwater vehicles for the
detection of mines and sgnding to the Amphibious Ready Group is very atractive. With
advancements in hardware and object-oriented language technology, more sophisticated
and robust software can be developed. In this chepter, the problem dsatement is
addressed to provide insgghts about why Java and Java boards are dedrable for an
autonomous underwater vehicle.

B. PROBLEM STATEMENT

The Nava Posigraduate School Center for AUV Research, Monterey CA, has
been designing, building, operating and researching AUVs since 1987. The NPS AUV
seies is in its fourth generation. Great advancements have been made since the
introduction of the firsda AUV, but the control software of the vehicdle is gill written in C.
For the next generation of AUV, it is dedrable to have a rdiddle fast platform:
independent source base that can apply modern software engineering techniques, be
developed by dudents on persond computers, and capable of been accessed via the
World Wide Web. Since the environment where the AUV operates is a very unforgiving
one, the code that operates in the vehicle must be the same as the one of the one operating
in the virtud world. In other words, the vehicle must not notice the difference between

virtua world operations or in water operations.
C. WHY JAVA AND JAVA BOARD?

Each generation of NPS vehicles has provided substantialy increased operationd
capabilities and sophidtication in hardware and software. With the advancement in red-
time computer languages support, object-oriented technology and cogt-effident and hight
performance hardware, this works proposes for a fifth generation of AUV software. A

new underwater vehicle with Java-based architecture can greatly improve rdigbility,

15

endurance, and verifigbility. Java hardware for in-water components will provide fast
performance and low power consumption in which improves endurance. Accesshility to
both low-level and advance Java Applications Programming Interfaces (APIs) will make

the software robust and easy to maintain, contributing to low maintenance costs.

Over the past severd years the computing community has been coming to widely
accept the Java platform, a technology triad comprisng a relatively smple Object
Oriented Language, an extendve and continualy growing st of standard libraries, a
virtud machine architecture and a portable bytecode class file format that provides
portability a the binary code levd. Java's promises of “write once, run anywhere’ has
increased the platform’s gpplication domain. Java is a fully object oriented programming
language with strong support for proper software engineering techniques like the building
block approach to creating programs and reuse of aready crested. Java is more secure
than C and dmpler than C++. Unlike C and C++, Java has a built-in modd for
concurrency (threads) with a low levd “building blocks’® for mutud excluson and
communication that offer flexibility in the desgn of multi-threaded programs. Parts of
Java (APIs) address some red-time gpplication aress like javax.com for manipulating
serid and pardle devices and SDK 1.3 for the timed event classes. The integration with
a naive Java hardware board reduce the dependence on externd components and
provides high data transfer. Java byte code will be directly executed on the board, so
there is no need of Java Virtua Machine, providing a smdl footprint, and with the red-
time environment offered by the processor and development tools offered with the

package, a complete development solution is provided. The Java board will provide cost

16

effective embedded applications by improving peformance and reducing power
consumption, a key parameter of performance in robotics devel opment.

D. GOALS

The area of concern of this thess is the execution levd code. The primary goas

for thiswork are:

To provide a good st of software requirements specifications documents
endbling a programmer to quickly <at programming according to
specifications without magor problems.

To build a Java-based execution leve cagpable of interacting with virtua world
and red world without any noticegble difference, in other words, that the
AUV software could not notice the difference if it is operding in the water or
the virtua world.

To prepae AUV software for Red Time Java migration and Java board
hardware integrated solution in the near future.
E. SUMMARY

With the advancements in software developing languages technology and the
increesing speed of current processors, the opportunity to creste more sophisticated
processes is avalable Complicated software like the one found on autonomous
underwater vehicles can take advantage of these technologicad improvements. In this
chapter we presented the problem statement developed based on the arguments discussed
in this chapter. We aso provided an overview of Javaand Java.

17

THISPAGE INTENTIONALLY LEFT BLANK

18

V. SOFTWARE ENGINEERING

A. INTRODUCTION

Many new computer scientists, programmers and even project managers find
themsdves as new arivas to a software development team. Usudly they are not fully
aware that a software product is just one mgor component of what is usualy a complex
system of hardware, people, software and procedures. In the software development
process probably the two most dSgnificant steps are the determination of (1) precisey
what the software product must do and (2) how, specificdly, the software product will
accomplish its task. The reaults in thee two deps are manifeded in two criticaly
important specifications: the software requirements gpecifications and the software
design specifications.

Software development currently suffers from three mgor deficiencies (1)
software engineering principles and practices, which should be the backbone of the
software development life cycle, are not fully accepted and followed; (2) straightforward,
well edtablished, and universaly accepted design standards are lacking for the software
development process and for representation of both process and product; and (3) the
software development process is empirical in nature and not yet predicted by easly
quantified or confirmed mathematical moddls.

The effect of these and other deficiencies has been amplified by the rapid growth
in the volume of software being produced and the admost exponentid increase in the
complexity of the problems now being solved with software. In spite of the need for a
grongly structured approach to software development, in many organizations software
development is il basically afreestyle event.

In this chepter an overview of these processes and their application to the
software development for the NPS AUV Execution Java code will be discussed.
B. SOFTWARE DEVELOPM ENT CYCLE

A software development life cycle is a framework composed of a sequence of
digtinct steps or phases in the development of the software. It attempts to creste an

ordered gructure to the software development process. Each phase conssts of a set of

19

related activities usualy culminaing in a product that could be a document or a review in
which contributes to the completion of the software product. There are severd software
development models like the Waterfdl mode and the Spird modd. A generic software

development modd will typicaly go through these phases:
Andyss
Desgn
Coding
System Integration

Tedting
1. The Waterfall M ode

As shown in Fgure 7, the software activities proceed logicdly through a
sequence of deps. Each step bases its work on the products from the previous step.
Dedgn logicdly follows requirements, coding follows desgn, and so on. The waterfdl
modd has been widdy used over the past two decades and has served successfully as a

process model for avariety of medium-scae to large- scal e software projects.

Requirements }——

[y Y

Coding and

]
unit test 4—l
System

integration

A

Y

Operation and
maintenance

Figure7. The Watefdl modd for software development [Leffingwell
& Widrig]

20

2. The Spiral Model

In the spird modd, shown in Fgure 8, devdopment is initidly driven by a series
of risk-driven prototypes, then a series of waterfdl interactions are used to produce the
find product. It provides a good sructure that helps to address some of the requirements
chdlenges Specificdly, the spird modd darts with requirements planning and concept
vaidation, followed by one or more prototypes to assg in ealy confirmation of the
understanding of the requirements for the software sysem. The main advantage of this
processis the ability of multiple feedback opportunities with the user and customers.

tumulative
T cost
D

et | Prcgresg through steps Evaluate altematives:

R L |sentify, resoive risks
Determine objectives, ’

altermatives, constraints. .- Rish =4
i amalysic
} A <,
~ P Risk o e
" Ed analysiz f ‘-
."' o [SRS LRy \'\ -:
.‘_/' ._.___.-"'"- Ricle o e : ‘\r L
analysis i o
4 P e———— i T b,
/ £ T AT v Operational
,- o | B e \ Froohype % protonype
[7 | protoee) Potobpe -
Commitment | | { i t'-me | i !
partition] % Requu-zrr-i:rlb; "= - Siitinng s 0
! . plar, ifecvele plan (f‘r":ﬁp af | im e hedels, bepng,
| 19 px operation “Seftware / =ik,
e . _-~" requiremente - T
£ '---_____I___..--' -
* Development |Reguineme s Jif /
L : ’ ¥ SalDwars !
, -, - I
.._.\‘ . P'IEI.-I validation - product 7 %
e desi 1 r .
\\.._ Intedration and an - 8 : Code 7
e - best wlan Desgn ":ﬂ_"ﬂ-.fltl on e 3 e rd
g | and verification T |
e | s : é:ﬁ(‘ tesk i
= = ! = |
| S P
& I Fp
-EF‘ ! il 1 o -
& | ‘:_.é? | [
L b l o
i | “'Efd;* | -
g e "
[(,:Q\“ i G
Develop, verify
Flan next phases | rext-level product

Figure8. The Spird modd for software development [Leffingwel
& Widrig]

21

C. ANALYSISAND SPECIFICATIONS
1 Requirement Elicitation and Analysis

Performing a requirements or problem anayss tekes time. The god is to gan a
better undergtanding of the problem being solved before development begins. After
defining the problem, a clear problem statement was sated. Part of the andyss is to
identify the stakeholders and users of the system in devdlopment. At this point the AUV
is a vehicde for sudent research. The demographic background of the users is very
diverse. Generdly United States Navy officers conditute the great mgority of the
dekeholders. Officers with a variety of academics backgrounds but with the commondity
of coming draight from the Flegt provide the military expertise needed for the vison of
AUV use in military gpplications. These office's ae from different academic
backgrounds. Faculty stakeholders will be the permanent ones. Participants from the
faculty generdly come from the Mechanicd Engineering Depatment, Computer Science
Department, Electricdl Enginesring Depatment or Undersea Warfare Department. As
discussed above, the development of the software must encompass this variety and
congtant rotation of users. Ease of use and maintainability are important gpproaches to
follow for the development of the software system.

Since the AUV is a complex system, composed of various software components,
it was very important to define a solution syslem boundary. Once the problem statement
was identified and agreed, a system boundary was traced in order to successfully manage
the project. For this project the execution level code was going to be converted from C to
Javawith the first phase to be the virtud world code.

As pat of the requirements andyss, a requirements dicitation process was
conducted. It is a smple, direct technique that can be used in essentidly any design
dgtuation. The purpose of the process for this project is to gain better understanding of
the execution level code. The process was conducted during the early stages of the
project. Inteview with two faculty dakeholders was done. Insights about the
functiondity of the existing AUV and desire features for the next generation were given.
A st of questions was prepared prior to the interview process. A good time was spent in
literature review trying to get an understanding of the system and its complexity. The

22

initid interviews provided a good and broad information and produced more questions
about the system. A second round of interviews were done in order to clarify and answer
new quedions that surfaced while andyzing the information produced during the first
interviews. The second interviews aso provided the opportunity to go to preiminary use
cases and a storyboard in order to get feedback from the stakeholder.

2. Softwar e Requirements Specifications

Every engineered and manufactured product must be specified in some fashion.
As a product becomes more complicated, it will require more detal specification. A
given product may be gpecified in tems of its behavior and performance. Such
specifications are caled operationa specifications. A product may aso be described by
its effect on its environment and by its propetties Such specifications are caled
descriptive specifications. Descriptive specifications tend to define a product in terms of
its output whereas operational specifications tend to describe a product by its operationa

performance.

The specifications for the NPS AUV are a mixture of operationd and descriptive

specifications. The most important specification for the execution level codeis.
Sense-decide-act control loop with a hard red-time of 0.1 seconds or 10Hz

Any software requirements specifications document must be done without
ambiguity. Severd methods can be used in order to accomplish the requirements

specifications document.

Formad methods can provide tools used in the gpecification of software
requirements. Forma specification uses a language with a mathematicaly defined syntax
and semantics, usudly predicate logc. The kinds of sysem properties might include

functiond behavior, timing behavior, performance characteridics, or internd Structure.

23

So far, such specification has been most successful for behavioral properties. One current
trend is to integrate different specification languages, each able to handle a different
aspect of a system. Another is to handle non-functional aspects of a system such as its
performance, red-time condraints, security policies, and architecturd desgn. Some

known forma methods are Z [Spivey] and SPECS [Ludqji].

Recently, with the introduction of the Unified Modding Language (UML) as a
dandard grgphicd language for visudization, specifying, condruction, and
documentation of <oftware sysems, the gpecification of software requirements is
becoming easy. UML provides a standard way to write a syssems blueprints, covering
conceptual issues, such as business process and a system functions, as wel as concrete
programming tasks, such as classes written in a specific programming language, and
reusable software components.

D. SOFTWARE DESIGN
1 Design Steps
Idedly, it is dedrable to have a generic software design process that is

independent of any paticular programming language or gpecific design tool, which
aoplies to the full range of software products. The software design process is the
sequence of deps that sysematicaly trandform the function and performance
requirements (requirements specifications documents) to pseudocode, UML diagrams, or
any form of Programming Design Language (PDL) suited for coding.

The existing AUV execution level C code is very complicated [Burns 96], [Marco
96]. The lack of comments and the use of globd varidbles makes it even more
complicated. Severd months were spent andyzing the code in terms of functiondity and

traceability. Generdly, severd guiddines were taken to derive a good design.

24

a. Function Decomposition

Bagcdly the partitioning of the software product into components or

design entities. Some criteriaand/or congtraints for partitioning followed are:
Unit testing improvement
Modularity
Information hiding
Data dependency
Function separation

With the modularization, the cohesveness and the coupling of the
modules were improved, bascdly by trying to achieve highly cohesve modules while
low coupling. Modules that have clean interfaces, and that have al the necessary means
to perform their task, without undue influence from other modules, are most reliable,

b. High Cohesion and Low Coupling
Wdl-desgned modules must have clearly defined, precisdly named and

carefully typed interfaces. In terms of object-oriented design, coupling is a measurement
of how strongly one class is connected to, has knowledge of, or relies upon other classes.
Low coupling means not dependent on too many other classes. A module with high
coupling relies upon many other modules. Such modules are undesrable since changes
in related modules force loca changes and furthermore such modules are harder to reuse

because its use requires the additional presence the modulesit is dependent upon.

Coheson is a measure of how dgrongly relaed and focused the

responshbilities of a class are. A class with highly related responshilities, and which does

25

not do a tremendoudy diverse amount of work, has high coheson. Highly cohesve
modules are desrable. A module with low coheson does many unrdlated things or
attempts to do too much work. Low cohesve modules problems include hard to

comprehend, hard to reuse, and hard to maintain.

The exising C code was designed with very low coheson and very high
coupling. Thus a lot of redesgn work is needed to achieve high coheson and low
coupling.

C. Data Definition

The sdection of the gppropriate data types, data structures, files definition
and network communication types is fundamentaly important. For the AUV a smple
queue was developed to hold dl the commands being read from the misson script. The
decison to use a queue ingead of keeping a file open was the amplicity, fast access to
the commands and minimized dependence of the hard drive for maximum independent
reiability.

2. Use Cases

A use case is a narrdive document that describes the sequence of events for an
actor (an externa agent) using a system to complete a process [Jacobsen 92]. A use case
thus describes a sequence of performed actions that yields a result of vaue to a particular
actor. They ae not exactly requirements of functiond gpecifications, but they do
illugrate and imply requirements in the story they tel. A use case is roughly the same as
a function point, i.e. a cohesve piece of functiondity of the system that is visble from

outsde. Use cases are aform of functiond, rather than object, decomposition.

26

Sense Use Case

Read i):

Telemetry Crynamics
vectar

o 5 Fead Speed i
ead Sonars —
Sonars © Speed Transducer
: Read Batteries Parse commands i
Batteries Mission Script File / cammand

prampt

Fead Heading
Fead Gyroscopes
Compass
Gyroscope
Read GPS
Read Depth
GPS

rpms

>0

>o

>0

o

Check leaks
Depth Transducer

¢

hotars

Leak Transducer

Figure9. SenseUse Caseas UML Diagram

Use Case: Sense

Actors. Control loop class, sonars, batteries, leak sensor, speed sensor,
depth transducer, GPS, Gyroscopes, motors, fins, compass,
mission script, command prompt, Dynamics.

Purpose: Collect information about the environment through the different

sensors aboard the vehicle. These sensors are the eyes and ears of
the vehicle.

Overview: The autonomous underwater vehicle control loop class located at
the execution leve is respongble for the process of polling
information.

Type:

Primary and essentid

Typical Course of Events

Actor Action

System Response

1. Paameters from the command prompt| 2. Parameters ae read and matched
are provided. agangt a st of predetermined flags
hardwired in the software. If a match

occurs, then the appropriate flag is set.

3. Control loop class cdls the method to | 4. If batteries (motors and computer) <
check the voltage in the betteries. A 20.0 volts then cal the safe shut down
circuit board provides the voltages of method.
the batteries.

5. Method to check for leaks in the AUV | 6. The voltage is compared againg
is cdled. The leak transducer provides parameter established. If the reault is
avoltagesgnd. outsde the parameters then leaks are

found insgde the AUV and proceed to
cdl the safe shut down method.

7. Method to check for the depthiscdled. | 8. If depth is > 6.0 meters then cdls the
The pressure transducer provides a safe shut down method.
voltage dgnd through an andog to
digitd card. That voltage represents
the depth of the vehicde The
transducer must be properly cdibrated.

9. Control loop method cals the read | 10. If a contact with an object is made, the
sonars methods. The sonars return any information is saved like location and
contacts made. Two classes of sonars, distance of the object. If an object is
for contacts and the other one for found a a disance < 3.0 meters from
surfaces sweep. the vehide then dl sop. Callison

avoidance procedure is executed.

11. The speed sensor reads the speed of the | 12. Take the speed attribute of the AUV

AUV by mean of an acoustic Doppler.

The vedocity is dready in meters/sec.
The veocity is read as a vector form, in
its three components. u, v, and w. The
information coming from the Doppler
comes out a a rate of 2 Hz or one
reading every 0.5 seconds.

and save it as pat of the tdemery
informetion.

28

13.

Rpm sensors on the starboard, port and
thrusters motors provide the rpm of
each motor.

14.

Cdculaion of the mean rpm from the
starboard and port motors. The result is
saved a pat of the tdemery
information. Rpms from thrugers are
teken individudly and saved in the
telemetry information.

15.

The method that read the gyroscopes is
invoked. Mechanica gyros provide
output in the form of voltage sgnd.
The information coming from the gyros
ae avalable every 100 Hz or 0.1
seconds.

16.

Convason from andog to digitd is
done through an andog/digitd (A/D)
converson cad. The information is
perceved as rad/sec. Roll, Yaw and
Pitch rates recorded.

17.

Procead to read GPS information. The
GPS information is avalable every 1
second or 1 Hz

18.

The information is processed and saved
as pat of the tdemetry data The
pogtion is then use the cdculate future
location, disgance to travd and time
based on current speed. The
information obtained is true Lditude
and Longitude. It is compared to a
GPS zero (origin of the misson) in
teems of meters North and East. A
computation of digance travd in
meters from the origin is performed.

19.

The Compass interacts with the method
responsble for reading the information
about the heading. This information is
avallable every 10 seconds.

20.

Record the information as pat of the
telemetry data Compass heading is
compared with the integration vaues of
the numbers coming from the gyros and
dead reckoning procedures.

21.

Commands from the misson script are
reed from misson script in the had
drive.

22.

Commands from the misson script are
pased. A matched command is given
to the Act classfor action.

Table 1.

29

Sense Use Case Typica Course of Action

b. Decide

Decide Use Case

Match command
line flags
command prompt

Executiaon
parameters
hatch
Commands

Commands
Dueue
Figure10. Decide Use Caseas UML diagram

Use Case: Decide

Actors. Execution command prompt, Commands queue

Purpose: To compute the necessaxry control commands required to

successfully navigate the vehicle.
Overview: New commands are received or execution continues on prior

commands. Based on the information polled from the sensors, a
series of computations and comparison are performed. Decisons
ae made with respect to the appropriate commands to the
respective control surface in order to achieve the desire navigation

path.
Type Primary and essentid

30

Typical Course of Events

Actor Action System Response
1. Provides the paamees dring| 2. Read the flags dring, parse it and
containing the flags to be t. maich the flags. Once a flag is maich
then the respective vaue of is st to
true or false.

3. Provides acommand gring. 4. Read the command dring, parse it and
match the command with its respective
parameters. Based on the command
reed a corresponding action is
performed.

5. Provides the voltages read from the| 6. If computer battery voltage < 20.0 then

computer battery. the safe shut down method is caled and
the mission is stopped.

7. Provides the voltage read from the| 8. If motors battery voltage < 20.0 then

motors. the safe shut down method is called and
the mission is stopped.

9. Provides voltage read from the lesk | 10. If the voltage is > 1.0 volts then a lesk

check transducer. has been detected therefore proceed to
cdl safe shut down method.

11. Provides the range in meters of objects | 12. If the range is < 3.0 meters then shut-

pinned by the sonar down the motors. Perform shutdown
procedure.

13. Rpms from the sarboard and port | 14. Compute motor control commands

motors are provided. based on the values provided.

15. A misson command is given from the| 16. Compute navigation controls based on

Sense class

the values obtained from the command.
This controls include:

Hover control

Docking control

Target control

Waypoint control

Latera control

Rotation control

Recovery control

Latera thrusters control

Table 2.

31

Decide Use Case Typicd Course of Action

C. Act

Actllse Case

% Initialize %
Gyroscopes / e

I

Adjust
surfaces

\

Dynamics [~
Flanes
Send Telemetry
i Vector
Adjust rpms

Propellors

Figure1l. Act UseCaseasUML diagram

Use Case: Act

Actors. Gyroscopes, propelers, Sonars, planes, Dynamics.

Purpose: To control the navigation of the AUV.

Overview: Commands are sent to the different actuators in order to correct a
position or speed.

Type: Primary and essential

32

Typical Course of Events

Actor Action

System Response

1. Provides the command cal necessary to

effectivdly and successfully control the
vehicle

If computer battery voltage < 20.0 then
the shut-down method is cdled and the
mission is sopped.

If motors beattery voltage < 20.0 then
the shut-down method is called and the
mission is sopped.

If the voltage is > 1.0 volts then a lesk
has been detected therefore proceed to
cdl shutdown method.

If the range is < 3.0 meters then shut-
down the motors. Perform shutdown
procedure.

If a successfully command is received
from the parsng function, compute the
necessary command in order to achieve
the desire reault.

Communicate with dynamic by sending
atdemelry gring.

Table 3.

33

Act Use Case Typicd Course of Action

d.

Control

Dynamics

gense —————f

R
|

Contral

CDeﬂ'\C\EHIS/

e

Act

>o

Vehicle

|
|
|
|
|
|
|
| - I v
i e -
\:\/'\ = - Lateral Ty
==include=» <sinclude=>
: Fallowlight ==include=» Gontrol Loop ™ -—————— B, Contml o p o TEmewdes " Vetical
=<includes= | Contral < Thrusters
I o
e T A
__%fﬁr___J . ssincludes> .~ A
I rd
! s
7
d

AT
-

Control Use Case

T - ~.
Ve -
~
——— =<includes= V4 \\
. s -
N Lateral // ey
L Thrusters ; S
~ Teincudess T T~ e
~. ST M includes== — . ==includes=
. ==includess - ; ~_ ~
. - | P — .
el - | 4 T eincludes> T
incluges=.___~~ ==includes> | /s IR -
T | N - .
| / T .
I rd e .

~
-~ ~

_ . ==include== - P
e e P
e = - s
Raotational o T
Contral // // /
==include== // // !
==includes= - P /
A - s
Y . - Va /
N < s I
Speed ~ -~ rs
Control ™~ o7 <ainoudess 7 4
“ - s /
~ - i /
~ - s /
~ -~ I ;
S -~ . /
=sincludes= = i s E
T T T T T T T T T T T T T Recovery // /
- | Control Vs £
e | . /
. ==includes=
- | s v
~. | / /
. | / /
- . /

Use Case:
Actors:
Purpose:

Overview:

Type:

Figure 12.

Control Use Case as UML diagram

Control

Dynamics, Sensors, Control Coefficients, Act, Vehicle

To control the navigation of the AUV.

All the corresponding control cdculations are performed here.
Computations of hovering, waypoint control, target, speed control,
and fin control for example depends of some other caculations like
lateral control and vertica thrusters control.

Primary and essential

34

Typical Course of Events

Actor Action System Response
1. Provides with the corresponding flag| 2. If Hovering flag is set, compute hover
that specify what type of control will be control.
computed and performed.
3. If Folowlight flag is s, compute
followlight contral.
4. If Docking flag is set, compute docking
control.
5. If Tage flag is s, compute target
control.
6. If Waypoint flag is s&, compute
waypoint control.
7. If Latera control flag is s, compute
laterd control.
8. If Rotate control flag is set, compute
rotate control.
9. If Recovery flag is s, compute
recovery control.
10. If Thruster control flag is set, compute
thruster control.
11. Perform the necessary action to execute
the control.

Table 4. Control Use Case Typical Course of Action

3. UML Diagrams
a. Conceptual Model

Figure 13 shows the conceptua mode for the AUV. A conceptua moded

illugrates the different categories of things in the doman. The vehide dass, which

contains dl the tdemetry information like postion, soeed and misson eagpsed time, uses

the control class in order to navigate. The control class acts like a controller, which is the

35

heart of the vehice. This Control class has dl the methods to compute the required
control parameters for updating the trgectory of the vehicle, speed and depth. This
update happens every 0.1 seconds. An aggregation is shown between the Control class
and the Control Coefficients class. This is used to modd a kind of association in which
the whole-part relationships between the two classess The whole is the Control class
(known as the composite) and the part or component is the Control Coefficient class. The
Control class can have one or more Control Coefficient classes as shown in the

multiplicity notation but only one Control classwill bein existence.

Sensors and actuators are shown as abdract classess The basc
functiondities of this devices are the same, a sensor senses the environment and an
actuator responds to a command to act into something. The differences are in the
gpplications. Abdtract classes are pefect to collect the common functiondities. An
implementation of this class will guarantee those badc functiondities and will provide
flexibility to extend and add functiondities as required for a more specific sensor or
actuator. It is aso $own that the actuators and sensors will have digital-to-andog cards
for the actuators and analog-to-digitd cards for the sensors. The same concept of the

whole-part idea applies here.

The dashed lines represents the system boundaries of the Execution leve

code.

36

Virtual World

B

<=infarmation== |
|
|

[hvmamics

==information==

-~
-~
-
Phe
é/

Tactical

Figure 13.

Mawal Postgraduate School AUY Software Conceptual View BI

Vehicle

== gEs

s

Control

Control Coefficients

-
.—o—"H
z=zygg== ==uges= T
’—/H
-\"‘\. _F,’”-_—
T e —_
- -
.- -
Network Communications
EEA- R
AD Cards Sensors
IR
-
- |
// |
-
- EENE-T- R |
~

Modems

==implements==

Bl ==
implements Sensor

Acoustic Modem

1
"~
1
1
1
1
1
1
1
1
1
1
1
:
r i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

NPS AUV Conceptua Model

DA Cards

HNavigate Act
causers T
i
”
”

-

-
I

<2

Actuators

1.7
<o

==zimplements==
Actuator

37

b. Sequence Diagram

The use cases suggest how actors interact. During this interaction and
actor generates events to a system, requesting information or operations to be performed.
It is dedgrable to isolate and illustrate the operations that an actor request of a system,
because they are an important pat of understanding system behavior. A sequence
diagram is a representation of actor interaction and the operations initiated by them and

the system responses.

Figure 14 shows a high-level sequence diagram of the overdl interactions
between the different actors on the AUV. It is not intended to cover every aspect of the

complex operations but to summarize the operation.

Figure 15 shows a high-level sequence diagram of interactions between

execution and dynamics.

38

Hard Drive

H
g ee———_—_—— P
K 1
= 1
1
1
1
1
1
1
; |
R s
1
1
1
1
1
1
g 1
1
i T
m 1
1
1
1
1
1
1
v 1
H 1
:: - 4
il 1
I
£ 1
1
1
1
1
1
1
H 1
H 1
o
g b __ 1__
= 1
Bl 1
I
o 1
1
1
1
1
L 1
i 1
H S N
t 1
H 1
M 1
1
1
1
1
m 1
£ 1
- Lo
k-
0|
1
g
1l

GPS

Sonars

Control Looj

7: Parse commands

Initialize System
Get Gontrol Constants

2 Initialize
3 Initialize
4: Initialize

B Start

:
|
H
]
;
|
|

|IIIH_.I

8 Getwoltages
9: Check leaks

.
:

else-iftsonar range = 0.0 feet AND sonar range = 3.0 feet)

\\\\\\\ - e B e et e e

£ 5

£ 8

RN R

o g W

o oD ﬂ

Aoy K= = El

Y W F 8 H g

] o L) = = 5

o § x 9 z 2

L5 5w & < H

s % 2 : 5 g

5 o g I}
] 5 3 N £
5 - o] 2 P

sl B - H i £ £l E ez
o 2 2 E o 3 o £ £ = a & 2 =]
i3 222 B $| gl g E £ g -
P o kif i i i - puy - - =2 2 2 2
] ¥ Is 2 2 2 1 i 1 1 o 5 5 3 &
ol o e 2% 3 al o o o £ 4 ks 0
=1 - Il -] @ & & a -
.- - I 8 L - a b

10 ms}

{Repeat period

nd of Mission Seript;

Sequence Diagram

Figure 14.

39

Vehicle

amics

: Compute contrals
‘lssue command

TRead command

Control

13: Send Telemetry

8: Get Telermetry
|
! 12 Update Telemetry

H_.| J—

T
|
,
1
|
|
|
L]

Parser

|
|
|
|
|
7
"]
S N
|
-
|

Execution main

) | z £ | s
= z 1 2
£ £ 1 =]
g = | £
@ S = | 5
Z @ 2
I x [} 1 =
o 2 = | =
o & o \ &
@ = = 1 hid
— 1
1
¥ ¥ i
|||||||| |||||I.|||T||||IH_||||| _'||||||||||||||||_|||||||||||
1
4 £z ' | %
= 1
g “ DS
z = “ “ 1
A
= =] S
i F 5 2 |]
T w o 2 1 !
=R =3 = 1 1 M
= g & I g
o i in h |
= — - ¥
e @ \ - |
I I Ll
1
1
1

User

1: Execution flags

|
(]

40

Execution-Dynamics Sequence Diagram

Figure 15.

E. SOFTWARE ARCHITECTURE

As the sze and complexity of the AUV software increases, the desgn and
specifications of the overdl sysem dructure becomes a more dgnificant issue than the
choice of dgorithms and data dructures. The organization and compodtion of a system
is affected by the compostion of components, control sructures, protocol of
communications, synchronization, and daa access. The assgnment of functiondity to
desgn dements, the compostion of desgn eements, the didribution of those dements,
and the peformance are some of the parameters taken in consderaion at the time of

developing the architecture.

As mentioned in the desgn section of this chapter, the sdection of the correct

decomposition will create arobust, easy to maintain and reuse software code.

A typical robotic cycle is composed of a sense-decide-act executive cycle. Based
on that concept a set of repective classes were developed that could actudly map the
concept. A Sense class, which would be responsible for dl the reading of sensors and
information, like reading depth and speed. The Decide class would be responsible for the
determination of the execution flags in terms of matching them with the respective pre-
defined flags, matching the commands read from the misson script and setting dso the
right parameters in order to act upon that command read. The Act class is the responsible
for issue the respective command and interface with the actuators based on the command
reed. Findly the Control class is the one responsible for dl the computation of control
parameters required to successfully navigate the vehicle. A series of supporting classes

aso created but not discussed in this chapter.

41

1 Sense

Figure 16 shows the dependencies of the Sense class. Each class is shown insde
the respective package. Each class is a high cohesve module and low coupling between
the classes exis. The figure takes a look a a level of abstraction where unnecessary

detals are not shown. The dependency of the classes are basicdly in the interchange of

information.
]
Sense

T e T S

Diffiattivss sdependss [T T T 0 ;
Dynamics ool P '

B gdependss
«d@pendss 10 0 E
! e ! Globals

E E E E E EHécuﬁDn_FIags

Data_Processing

Data_Processing | ...

— 2 I8 3 N stependss =

Vehicle

________ cdependss ||

Control

L1 sdependss, _
]

Hardware ‘ E & 1

AD Cards | __;«P'_E_p"%f]?'??____i 5

Control_Coefficients

Figure 16. Sense Architecture

42

2.

Figure 17 shows the Decide class dependencies as a class diagram. Once the
information is passed as parameters to the Decide class, they are processed through the
Data Processng class, then required flags are set. The information is sent to the Control
class for the computation of the required control parameters.

parameters the required act commands are invoked and communication with dynamics

Decide

through the Network class is established.

zdependss

]

Hetwork

w
Metwork_Connection

—

]

Decide

«dependss

Control

¢

Figure 17.

zdependss

Decide Architecture

43

1 edependss

«dependss | I Execution_Flags

| wdependss

Based on the control

input_output

ListtMode

]

Data_Processing

S _>| Data_Processing

1

Yehicle

Globals

3. Act

Figure 18 shows the Act interaction with its dependency in a class diagram. The

Act class will update flags on the Execution Hags class, command necessary controls as

required and compute them. Depending on the vehicle location, the command is sent to

the digita-anaog cards of the corresponding actuator or to dynamicsin the virtua world.

Control

Contral_Coefiicients

[1

Data_Processing [f92pendss 1 o

Figure 18.

4. Control

Act Architecture

Act
At | |
g E«depénds»
«dependss . '
. Dymiamics
M
giependss
Globals
______________________ Exgcution_Flags
Data_Processing Hardware

Figure 19 shows the Control class architecture or dependencies in a class diagram.

The control class is the driven mechanism of the execution levd code. As shown, it have

communications with severa classes thet are essentias in the vehicle operation.

44

Control

Control_Coefiicients

Dynamics

________________ «dependss co----=[Dynamics

«depénds»

Data_Processing | edependss

Data_Processing || ' oadependss | 1
; L a8 : ; Kalman_Filter

«dependss

R R R Kalman

[]

Globals

Execution_Flags | L ...
cdependss : Sense

1

Network oo
Network_Conrnection |.. .. __xdependss o

i | input_output
by «dependss | Cammands_Queue

Vehicle ListMade
W

I

Figure19. Control Architecture

G. SOFTWARE DEVELOPING TOOLS
1. Together®

Together®, from TogetherSoft Corporation (Figure 20) is a modding tool to fully
synchronize modeling diagrams and source code. It includes a numerous of features for
to collaborative developing of software usng a common language, diagrams. Together
provides a dngle plaform with a cusomizable user interface for dl of ther work

45

throughout the entire software devedopment cycle. It dmplifies and integrates the
andyss, desgn, implementation, deployment, and debugging of gpplications. It supports
Java, C++, IDL, Visud Basc 6, Visud Basc .NET, and C#, dl in a sngle product.

Some of the features provided in this developing tools are:

Peterns. pattern repository includes J2EE patterns, Ul patterns, and test

cases. Deve opers can aso customize and add to the repository.

Refactoring: the refactoring tool makes sure that al changes are correctly

propagated throughout an agpplication.

UML 1.3: diagrams include use case, activity, class, sequence, collaboration,

state chart, component, and deployment.

Audits and melrics Built-in unit testing even heps uncover problems during

the coding process.

Multi-language editor: provides a editor for different languages supported, in
that way the developer does not have to go outsde

the package.

Documentation generation: Autométic documentation generation.
Standardized documentation like Java doc

isavalable

46

B 1ooether b - AW _Saftware IE|

Fle B Search Wew Froject Fun Deploy Se== o Touls Hep

HEEES| | AnC(MEER eS|)@ 2] 58| @ s =
Eapioer = e - L H K
Q| & oim) A Bl e B8
Al || ol st . seauees |
= @-.!J.I‘v.'jmh'fua q
= Em
BE =cefoust= lil A
By, Aoty e
o ERAEER
o Archischirs Yisw e o]
o Probéem doman s e i
Ry i arfeata: i —— | ——
i Syt Dvervisiy el B |[i Bxecufionlags . 1o
=] cemponer -"-”':::Ll e 4
il Senamnce B s Tolp e Eiry o i B e
Etadechatt @ 000 L E T s e i s r
Lise Case s e [i
.:::::.:E:::::::::l:::::::|::35Fia'rseiaun
e, ERbias
| SR
Ecllor
CEETEAL e D L e e

20 ioport mil.newy, pps, swvhiries. exerution, dats propessing.ata Frooessicg) ::

21 iopore Bll mawy. epd. Guvkeles. @¥eruTioh. inpoc_gucput. Focy =

Z2

23 [Epublic olasa Sen=e [

24

Z1 Execution Flags Elagss

26 Venicle wehicle:

27 ACC 0L |
| Zn AL cacda cardss |
be R oo AL e e R At e sl L ik

{3 Ui Serae e r conrl prs Eaanudnn e | I v] i | Parsar fva] Lisirida java

Metwork_Connectimavs | Dscwspwa | ot Coeticketspus | Actmes | STIROmnerimes s Processraime
|| || commurats_susie jeen | Exccuion Flepzjove | 57725 @ v | 57725 soner e | Fljmes | AD_corutsjova |
Eqfl === | T S R T~ X B

Figure20. Together Control Center

a. UML Modeling
All UML mgor diagrams, including class, use case, Sequence,
collaboration, activity, state, and component are supported. Figure 21 shows a class

diagram representing the AUV conceptua modd and Figure 22 shows a Use Case model.

47

aiol x|

Fe Ef Smwch Mew Poect Bn Dely Eelehn Tedr Hen

___________ = bl o
B[0B |4V |22

Bf ~inans |

e P ek S e HL e e am] i Il] e b e i e e e M e T ol e el

) e sk e o)
R R e e e R s e e e e R e e e B R e e, R o

CEEBO R~ vy EOmeE o 7|

--p.rrl:j:mn'lqm-:.

= i e

| Demamics e i : e Contral 3 i . | Comtral CorEicents

-
&
B i

T

"‘-.'Hh'l.lidh!- : =
S T TR L lwnlgREr e

Hestwaa Commmmications |

Ty eoniiraia ey Sridon fibh
e T S B e B B T | [k
; ; AT e e e ; ; ']

B =i [irea || ce 4

Figure21. Class diagram as pat of UML diagrams supported by
Together

Advanced sequence diagram fegtures:
Reverse engineering of any operation into one or more sequence diagrams.
Implementation of class operations generated from sequence diagram
Specification of control statement, such asif, for, and while

Other modeling capabilities are:

Visud XML modding with XML dructure diagram, with import/export

capabilities, and XML editor

State diagrams

48

ether & — M Saiteare Architecture : ;-I!l-ﬂl

[C@ Search Yew Froeel Mo Copioy Stecin Tode o

THRERES S| AR DE[E D D[]]| @ s e =

Doz e ke
B 0T

ks P Seves o Com |

SensaUsa Casn i R T e

Telemety ol .. Puremies

';'ZZZ"ZZZZZZZZZZ'.ZZ ack
% o Read Spesd 3 i i

I 1 T Fesd Sonars L S

MR e R O RR 2

[e e e e e [|

; % 5 Farse commmands A L i !
i | Rz BaticHes e
el R R - 00D IMigglan Bedpt Fllg Seommznd, |

%—@ i
B 3 Read fhroecopes e
Compass. | ; 5E : ; ;
e I e ora e e
i i _{"N-_--"’ Read Dapth R e e R

e L M e T _%
! : Enuting o i ! : z
R R e s 4 4 (Unemm:) £ o

A Ay IR A e w e Dep Teanedieey C o S e

(L

€| | e T S T 0 o) LR o G S e et | i ﬂ]i

Er Froqace | [(ST = S

Figure22. Class diagram as pat of UML diagrams supported by
Together

Visud REE deployment profiling with web application, dient application,

and enterprise gpplication diagrams

Data modding with entity relaionship (ER) diagrams

Create language-neutrd class models without being tied to the particulars of a
programming language

Real-Time Sysem Modding:

v' Four diagrams, including system context, sysem architecture, event shest,
and interaction

49

v' Extensons to sandard UML diagrams, including concurrent state eement
on the date diagram, asynchronous messages on the sequence and
collaboration diagram, and predefined activity and exception stereotypes
for use case eements
b. Program Building
Together supports Java, C++, IDL, Visud Badc 6, Visua BascNET and

C# dl in a dgngle product. It has various code asssance like common syntax error
highlighting and rgpid comment/uncomment blocks of code. With the feature of
collgpse/expand code regions, the programmer can essly navigate throughout the code
and focus on in the portion he/she is working. Figure 23 shows the programmers editor
pane where a full programming interface provides dl the necessary tools for the
developing of software. As shown in the figure the public methods from the vehicle dass
are shown in the window when using the dot notation. At the bottom of the editor pane
the names of the opened source code are shown. The most left pane shows a typica
directory structure, which represent user packages. It dso shows your different UML

diagrams.

50

R romtsertarsaiveare R - 1E.

FE B Seech Wew B Bin Deply Stein Tods Hep

EHEEES | n e vk m e EE e | B | L] e R) oo etaas =
el e W o\ x| eoor oA x
o wr | e @2 B swA|sER T ek G ||
AL - F
=4 e Ty |=
@' '!'_,‘EI:IrHu=| 795 vehicle,sec_srs_bow_lsteral | - [- control_coeffdicience, pet_k_Chruster_psi|) ® 0§
e =5 56 - conteol_co=fficients, geb_¥_thruscer_ti| ® vehicle
= (8] ray 7ar
[=] [156 + control_coefficients, qek k_thruater beerezid * croa
= B mretinies 1580
B E]M“ 160 - contzol_cosfficients, qut_k_thruaktsc_csrcank|) T au
- 761
= B oorn 62 + ocontrol_cosffloients, quc ¥ ChEUSCRE. CITTAnC|) ¥ gu
B conliad 8% =1
H- [l derla_proceszng T54. + control_cosfficients, quc_k_soay hoverl| * wehicla.
H] denide 165
1 fm] s 66 + control_posfficienrs. gec ¥ ChIuACeE cULienc|) ¥ ox
® E] hardwwra nen - - -
ot oot 25
& = wokuen_ric
E Pl weldole,set maw ateen Jatsral | - conGrol coefficiencs.pet k chroster poi|) t D
=5 mﬂ:' 790 [e _mrw_STI D00 sirergthickaion] voWl & TA0iesta, qec_k Thruster Ti| ¢ vemiole
o B i Er |l ol _mur STEE bewrincy el bl o ||
o3 i 9z :-Qmﬂ-_grrx drzctionint woud | Acients, gec_k_thruaker_bower() T crog)
® [vetce m | el _mrv_STT2S _ren el wod ||
B mcecrdbon 74 ;-‘-’;&d_m-ujﬂii_ﬁhmﬂl'(dnﬂﬂ ored | ACilEmbE geC X _thruater_carrent|) ¥ s
B3 mrvanes 2 [t oot =) v ||
H Evaridian 776 [E o e i ;?.Giu'lb\!l.I:IEt-_'I_HJI:UBbEI:_GJI:IEHI:-I'I T s
[Elie Exscabion_Tazd 77 e o[|
= e L e o A ; - ;
= E-T 33: (i g i o e vy acient=, get k_mony hover(| ¥ velncle
Bm 980 [0 ze_setts_prowes_trowirinie] Al | eienes. quo_¥_thrudcer curranc|) ¥ o
g wis] gl 181 :& ol ek _planas: st o) Yioad .'-::
EM"‘" | THE }o4F and of a@lae af Cha 1T (¢ waypaint dledencs > stendoff distanes + 20,0) blask =
Arlyss = = |
o Sichdeche Vi T e 1M]
gi""*’“"“ [Uinttiecn mml Cotrolpes | Cacubnen | Kipwn | Yerkewa | Pemmiwa | Letispws
o erneriks -
i e hewort Corectiones | Decideiws | CoCoeticenismos Gctiws | STIOO0 s Dee Pocessrgme |
| &l corpoort Comevredz_Cueun v | Exacation_Flsge jrvm | 7725 Grropmen | STP2S_rormrmen | Fd e | AL cand=irs |
| § 1 [T | st | [Cireren || ot

Figure 23. Together programming tools

Some of other programming tools available are:

A full Java debugger with the ability to debug multi-threaded code, remote,
distributed of servlets or any remote process, and gpplets among others. At

run time, an output window is provided, Figure 24.

Fully integrated version control support

Easy code reuse and refactoring tools

51

e T =T
re DN Seech Wiew Proect Fan Daply So-oo Todr Hew
TEBARS(D AN 0 RE R G| B D | wass e -
kT e #H A | [roe L=
EEE TR TR Blged mEH|scw 2k o 5| @]
Ao e -
EL T il 2=s wetilele, g9t auy how_lacaeal | - | - copceol _coefflolanta. gt k_theuscee pail) ¢ D
=t E|"“ 756 - eomkenl_ooefficients,qat_k_thruatec_c() * vehicle :
o B 757 £
A By e 758 + contEol cosfriclehta. qat_k_ThIustar houme|) ¢ cEog
B B sranes 158
- EIM'-"‘ 60 - poncepl oceffimiencs, gtk thruater oueeent|) T
= E] =] :;.
7 B comn 3 & ; L o]
& E“-ﬂwg % Uik | Senzn man] Conbrol s |_ Exearion jovn J 0 jam J Y shick v J Frroriws Lipthioc jmew
= g decisa Hetwor_Comechon b]I:Imm] Soniral Castiients Een. | mu[SM000_sanajsvn | Dot Frapessng e
L] :E:‘mﬂ = ‘Comnand: Guei jua | Eren tion Regeiova | STT05 Cymiia | STIS sonar ke | FrtRva | ALY cork e |
sz P wox

[| CBegin sentec_STIOND scomc]

B |rEnd cencer_ST1000_scear]

[Gcakc get Comteel CoeffHicdents]
File name: conceol. coeoveaes. g

File contcol. comphants.iopuat 1= open

#hh CONTROL COEFFICIENTS ADE: www

[k psi = L0, ko= 20, hwv=00, kz =100, kw=30, k thetn = 5.0, k_g=1.0]
[k cheuscec pri = D5, b taoaster 1 = 2,0, E_thruscee cokace = 1.5]

[E_cheugceE £ » 300, k_thipxerer o = 80.0, ®_Thrugcoe choca = 15.0)
[k_pcopellec_hover = 2000, k_sacge_hower = G000.0, k_pcopeller cucrenb = @O00,0]

[k_theuscec_hover = 2.0, k_sosp baver = 40.0, k_thruster_curcent = <40.0]
[E_chruscee lecetal = 45,0, sradolf diatancs = 2.5]

]

[=] . Ewerision_Tes |

£

Ei' oz "t-l;l:l-” AT

Figure24. Together runtime output window.

C. Quality Assurance and Metrics

G|

Extensve s#ts of merics for finding and diminating problem code is

provided. Over 75 audits for Java and C++, including naming violations, performance

inhibitors, and common errors are included. Metrics for Java, C++, C#, Visud Basc 6,

Visud Basic.NET are provided to include cohesion, coupling, and complexity.

52

B Toaether & — Cashsales N _1®ix

Fi Ct Zesch Yew Proecd M Deply Sebcion | Tods | tep

T HETES® s |AnE (e EE oo [1B | o werbepucs | G =
Erphi 8 x| e Ei"d‘- # 0%
= = du of S
Q.l'?‘? & “Elﬁ}lj_.'ﬂl B | Lo Wiehvics Foszuls
LT
Thie | beevision (|
I Cog Fa D
Pl N EnTre
Dmclsrsion Tyle T Eoex r
O rsantabon [Cobeson =
B EBSpedic | Conplecty | ¥
¥ Marsing Shyle H Couping i 4
Feriormance T Eresprusion =
Fl Prozsble Ermors 4l Halsterad w
B Superfuais Content | Inkerience [
E BRI SEEN: | & inerfonce-boed Couptog | I
AL L3
3 Pk sk | [El
4 Fatio | w
| [=
4] - |
R LR Sa et || S s
| Emect i | nsaectan | Setpetoums ' SomSetbs. || LosdSe.
B — s [eaea | i

Figure25. Together Metrics and Audit capabilities

d. Documentation Generation

A customizable, easy to use documentation generation is part of Together
package. A full Javadoc style output for HTML report can be customize using templates
or a new desgn with the options to creste documentation for the entire project or just the
portion you are working on. The user can generate fully customized reports based on
user's templates. Printing of individud diagrams and documentation with preview option
can be done as wdl as saving them to afile. Individud graphs diagrams can be saved to
a file as images with the format svf, gif, wmg. Figures 26 and 27 shows the procedure

and result of the documentation generation tool. The result is a Javadoc look aike

53

document. Pre-design templates as well as a design option can be used to tailored your

documentation design.

e
Ceprarey rieg Tymplstw. |~ 5
et L B
CARAOL. fAM
Hpdoms Mis class bas &oe cordrol sedhods for (e mavipetice of

o rohuaiey I alae hee B ombesl loog acthod wizoh 1o
th# bdrt o peblade conbesd

My 33, LN

T Erapwtiog Jirk Sl tars far Ao (daraiar akdals,
' =
] o

] u

b ild 1o | e) e e

Torerers : o R L

L Cnn ,.' .

ax [o
1 " | lwgr:
R [z bt BT Tt [|
A o ey 17 s s s |
1 It f - e a
] T P b Frazssminegy
i 4
2"
i |n=||ﬂ.-!||ﬂeﬂ-||-rrll

s CREETT Bl Gl RS R = AEC. ALy

b2 Import 2dl.oery TRE. wrrALder, e pcotdon . sEnkzol, Cendrol_Casfficimtr:
1% TREOTT WL PR, FDE. SUTHE RS, S E U0 NECETE, He rmork_C anrneorion)
IE Smgecrt B3l G BRS. MSADARE, G OGN , LEPUS_oubFut. TRETAES

Conrel Coeflcit

Taia Proorms Emaemrllimﬂ:utf-.:-:u
Tacids | milnavy mps suvAsiee averfion, vahid
Ceewmvims Parkage Tl on Trae [ndex Hals
Emeugon Tedt T e PRl R PRI
Eﬂ -
1]}
Elstinis
Lazllads

Pletwark. Cormrachion

Figure27. AUV document generated using Together
54

2. Sun’sFortefor Java

Sun Microsystems Forte for Java integrated development environment (IDE)
supports dl the editions of the Java 2 Platform: the Micro Edition (2ME), the Standard
Edition (J2SE), and the Enterprise Edition (J2EE). The Community Edition (CE) is
offered a no charge and includes a st of tools, including support for CORBA and XML
for developing cross-plaiform gpplications and applets written in Java. This edition

includes dl the functiondity needed for developers to build sophigticated gpplications.

Forte for Java CE enable you to edit, compile, debug, browse, and deploy Java
programs as well as desgn and create GUI gpplications. The IDE is built entirdy from
modules. The source editor, GUI editor, and debugger, and file explorer are some of the

modules composing the IDE. Key benefits of Forte for Javainclude:
Customizable, extensible development platform that supports amodular API

The addition of new functiondity by adding new modules from Sun, Sun's
partners, and the open source community without dependencies on other

dements of the IDE;

A savices-centered environment with an IDE that supports XML-based
integration of Java language objects.
100% competibility with Java

H. SUMMARY

This chapter presents the genera methodology of developing Java software for
the NPS AUV. The software methodology is like a scientific method to follow in order

55

to produce qudity software in potentidly less time and money. The concepts were
applied to the development of the Java code for the NPS AUV. The process described
this chapter proceeds from andyss to software architecture design. Findly a descriptive
oveview of sophisicated software engineering design support environments is provided
for Together and Forte.

56

V. REAL-TIME JAVA AND JAVA BOARD

A. INTRODUCTION

The embedded and red-time sysem marketplace is exploding in the "pogt-PC"
era, especialy as more and more devices are becoming Internet-enabled. Networked,
red-time embedded sysems ae becoming common in makets such as
tedlecommunications, indudrid autometion, home and building control, automotive
sysems, and medicad insrumentation. The software content of these networked devices
IS soaring, putting a dgnificant sirain on scarce development resources. The red-time and
embedded devedoper adso faces an extremdy diverse processing environment, with a
wide range of different (and incompetible) processors, operating systems, and periphera
device types. Thus, engineers are increasingly looking to Java technologies to provide a
more productive, portable development environment for red-time and embedded
sysems. These technologies include the Java object-oriented programming language; the

JavaVirtud Machine; aswell as alarge selection of runtime dass libraries.

In the coming years, Java-enabled embedded systems will represent billions of
units, ranging from smart cards to vehicle units. Java is ganing condderable popularity
because it reduces software development, it is easy to learn and use and it provides
flexibility and portability. The Red-time Java Specifications as November 11, 2001
addressed issues that needed to be implemented or extended in order to saisfy red-time
requirements in the language. Some companies went ahead and Started to develop
processors capable of ddivering red-time capabilities, including the embedded operating
systems for the Java language. These devices are cdled Java boards. Some aspects of a

Java board are:
57

e.

A sngle chip Java micro-controllers directly execute Java Virtud Machine
(VM) byte-codes

Red-time Java threading primitives and a number of extended byte-codes for
embedded operations.

The native VM byte-code implementation diminates the typicd interpreter
(QVM) or that software layers as wel as the Red-Time Operaiing System
(RTOS) kernd layer. This could provide the most optima Java performance
in both memory requirements and execution time.

Suited for red-time networked embedded products such as indudrid

controllers, smart mobile devices, and automotive communications devices.

Embedded real-time Operating System, reducing overhead.

In this chapter we will discuss the aspects of Red-Time Java and an overview of
alile s Java board.

B. REAL-TIME JAVA

Java is more secure than C and smpler than C++, and it has found a receptive

audience in users dissatisfied with these languages. Unlike C and C++, Java has a built-in

modd for

concurrency (threads) with low-leve “building blocks’ for mutud exduson

and communication that seem to offer flexibility in the desgn of multi-threaded

programs.

For example, javax.comm libraries are cgpable for manipulating serid and

pardlel devices, and V1.3 of the Java Software Development Kit (JSDK) has introduced

utility classes for timed events (javautil.Dae, javautil.Timer, javatuil. TimerTask).

Therefore, Javais now seems aviable candidate for redl-time sysem.

Java is an object oriented programming language with syntax derived from C and

C++ [21].

associated

Many of applications that Java promises to enable on the Internet have
red-time condraints. These gpplications include virtud redity, voice

58

processng, full-motion video and red-time audio for indruction and entertanment.
Outsde the Internet environment we find automobile, communicatiions, and home

goplications usng Java in embedded systems that are starting to embrace our daily lives.

In many ways, Java is a much better language than C and C++, two of the more
popular languages for current implementation of embedded red-time sysems. With the
Java extenson for red-time it will be wel suited for red-time robotics, and in-vehicle

navigation systems.

High-level abdractions and availability of reusable software components shorten
the time to implementation and therefore the cost of development. Java's virtud machine
execution modd diminates the need for complicated cross-compiler development
gysems, multiple platform verson maintenance, and extensve rewriting and retesting
each time the ftware is ported to a new host processor. For the NPS AUV devel opment

team, such time and money costs are mgjor inhibitors and sometimes show-stoppers.

Unlike most exiding red-time systems, many of the applications for which Red-
Time Java is intended are highly dynamic. New red-time workloads arive continudly
and mugt be integrated into the existing workload. This requires dynamic management of
memory and schedulability andyss. An additiond complication is that an application
developer is not able to test the software in each environment in which it is expected to
run. The same Java byte-code agpplication would have to run within the same red-time
condraints on a 50 MHz 486, 2 GHz 586, and on a Unix/Linux computer. Furthermore,
each execution ervironment is likdy to have a diffeeent mix of competing operating
sysems condraints and diverse gpplications with which this gpplication code must

contend for CPU time and memory resources. Findly, every Java byte-code program is
59

supposed to run on every Java virtud maching even a virtud machine that is running as
one of many tasks executing on a time-shaing host. Clealy, time-shared virtud
machines are not able to offer the same red-time predictability as a specidly designed
rea-time Java virtud machine embedded within a dedicated microprocessor
environment. This divergty is acceptable neverthdess, since development can occur on

diverse platforms while in-water operations can be highly optimized.

Java task scheduling is based on a hard-real-time modd. Specidly desgned
virtua machines offer guaranteed compliance with this modd in the sense that each task
is dlowed to run no more than its budgeted time. Red-Time Java is an extenson of
traditiond Java in that it offers additional syntax and additiond time and memory related
semantics to the Java programmer. However, it is a subset in that it forbids certain legd
Java practices in cases when the use of these practices would interfere with the sysem’s

ability to support reliable compliance with red-time requirements.

Red-Time Java is implemented by a specid preprocessor that converts the
extended semantics into traditiond Java code. This traditiond Java code is then trandated
to Java byte codes by an ordinary Java compiler. The resulting Java byte codes can be
executed on a traditiond Java Virtud Machine (JVM) or on a specidly designed Red-
Time Java Virtud Machine (RTJVM). On a VM, the trandated Red-Time Java
goplication will make bedt-effort attempts to comply with the specified red-time
requirements. For best performance and red-time predictability, it would be necessary to

run the trandated byte codes on the RTIVM [19].

60

Red-Time Java consds of a combination of specid class libraries, standard
protocols for communicating with these libraries, and the addition of two time-related

control structuresto the standard Java syntax.

However, detalled study of Java reveds a number of obgtacles that interfere with
real-time programming. Details that might be of interest and applicable to the NPS AUV
software developing team follow.

1 Challengesin the Current Java L anguage

The main problems for Java as a red-time technology fal into severd aress,

mostly related to predictability. Some of the problems categories are [6]:

Thread model: The Java Language Specification explicitly dates [JLS00,

Section 17.12]:

“... threads with higher priority are generally executed in preference
to threads with lower priority. Such preference is not, however, a guarantee
that the highest priority thread will always be running, and thread priorities

cannot be used to reliably implement mutual exclusion.”

This generd flexibility makes it impossble to ensure that red-time threads
will meet ther deadlines. The implementation may or may not use priority as
the criterion for choosing a thread to make ready when a lock is released.
Even if it did, unbounded priority inversons could sill occur since there is no
requirement for the implementation to provide priority inverson avoidance
policies such as priority inheritance or priority celling emulation. There is ds0
no guarantee that priority is used for sdecting which thread is awakened by a

notify(), or which thread awakened by a notifyAll() is sdected to run. Other
61

facets of the thread modd dso intefere with red-time requirements. The
priority range (1 through 10) is too narrow, and the relative degp() method is

not sufficient.

Memory management. Java provides no mechanism to reclam gorage but
which insead ae implemented with automatic memory reclamatiion by
gabage collection. Efficent red-time gabage collection is ill more a
research topic than a mangream technology. This is a particular issue for
Java, gnce al objects (including arrays) go on the hesp. The System.gc()
method provides a strong hint that garbage collection is desred a a time of
invocation.

Asynchrony: A real-time program typicaly needs to respond to asynchronous
events generated by ether hardware or software, and sometimes needs to
undergo asynchronous transfer of control (ATC), for example to time out if an
operation is teking too long. The interrupt() method requires polling and thus

isnot an ATC mechanism. Javais rather wesk in the area of asynchrony.

Performance: Although “red-time’ does not mean “red fad”, run-time
performance cannot be ignored. Java has severad chdlenges in this area. The
key to “write once, run anywhere’ is the WM and the binary portability of
class files. Neverthdess any software interpreter introduces overhead, and
hardware implementations are not yet mandream technology. Garbage
Collection has an obvious performance impact, but performance (or

performance interva) of garbage collection is not guaranteed. This problem

62

often manifest itsdf as intermittent “pauses’ or “hiccups’ when garbage
collection noticeable preempts other processes at ingppropriate intervals.

a. Concurrency and Synchronization
i Scheduling and Priorities

The Core Java specification supports a large range of priorities.
Each implementation is required to support a minimum of 128 didinct vaues, with the
highes N being used as interrupt priorities, where N is implementation-defined. In
addition, the Core Java semantics require preemptive priority-based scheduling as
defined by the FIFO Within Priorities policy. This modd is in marked contrast to
Basdine Javas smdl priority range (10 vaues) and absence of guarantee that a higher
priority task will preempt a low priority task when it is reedy to run. Alterndive
scheduling policies may be specified via profiles. The Core task class hierarchy is rooted
at CoreTask. A CoreTask object must be explicitly started via the start() method. There
are two specidized extensons of CoreTask:

The SporadicTask class defines tasks that are readied by the occurrence o an
event tha is triggered ether periodicdly or via an explicit cal to its fire)
method.

The InterruptTask class defines tasks that are readied by the occurrence of an
interrupt event, making them anaogous to interrupt service routines.
ii. Task Synchronization Primitives

Task synchronization is provided in the Core Java specification via
a number of different features, a firg group of which supports priority inverson
avoidance and a second group of which does not. In the first group, Basdine Java-style
usage of synchronized methods and synchronized(this) constructs are both supported and
define trangtive priority inheritance to limit the effects of priority inverson.

63

b. Memory Management
I. Garbage Collection

A key requirement of the Core Java specificetion is that the system
need not incur the overhead of traditiond automatic garbage collection. This is intended
to provide the necessary performance and predictability, avoiding overheads such as
read/write barriers, object relocation due to compaction, stack/object scanning and object
decription tables, as well as avoiding the determinism problems associated with
executing the garbage collector thread.

C. Asynchrony
I Asynchronous Events

Red-time sysems typicdly interact closdy with the red-world.
With respect to the execution of logic, the rea-world is asynchronous. Three kinds of
asynchronous event are defined by the Core Java specification:

PeriodicEvent is defined to support periodic tasks. The event fires at the start
of each period, which causes the associated periodic event handler task to
become ready to execute its work() method.

SporadicEvent is defined to support sporadic tasks that are triggered by
software. The event is explicitly fired by a task which causes the associated
sporadic event handler task to become ready to execute its work() method

InterruptEvent is defined to support interrupt handling. The event can be
explicitly fired by a task (to achieve a software interrupt) or implicitly fired by
a hardware interrupt. This causes the associated interrupt event handler task to
become ready to execute its work() method, which must implement the
Atomic interface.

d. Time

The Core Java specification defines a Time class tha includes
methods to condruct times in dl granularities from nanoseconds through to days. These
can be used to program periodic timer events to trigger cyclic tasks or to timeout

ovearunning task execution. In addition, the reaive dday deep() method and the
64

absolute delay deepUntil() method provide a programmatic means of coding periodic
activity. In both cases, the time quantum can be specified to the nanosecond leve. There
is aso a method tickDuration() to return the length of a clock tick.

1 Real-Time Specification for Java (RTSJ)

The Red-Time Specifications for Java extends the core Java semantics in the

following eight arees
Scheduling
Memory Management
Synchronization
Asynchronous event handling
Asynchronous Transfer of Control
Asynchronous thread termination
Physical Memory Access
Exceptions
The Redl- Time Java Expert Group Specifications follow the following principles.

Applicability to particular Java environments. Usage is not to be redtricted to

particular versons of the Java Software Development Kit.

Backward compatibility. Exising Java code can run on any implementation of

the RTSJ.

“Write Once, Run Anywhere’. This is an important god but difficult to

achieve for red-time sysdems (as a trivid example of the difficulties, the

65

correctness of a red-time programn depends on the timing properties of the
executing code, but different hardware platforms have different performance

characteristics).

Predictable execution. This is the highest priority god; peformance or

throughput may need to be compromised in order to achieveit.

In summary, the requirements design provides red-time functiondity in severd

areas. Below is some that could be gpplicable to the NPS AUV:

Thread scheduling and dispatching. The RTSJ introduces the concept of a
real-time thread and defines both a traditional priority-based dispatching
mechanism and an extensble framework for implementation-defined (and

als0 user-defined) scheduling policies.

Memory management. The RTSJ provides a generd concept of a memory area
tha may be used dther explictly or implicitly for object dlocatiors.
Examples of memory aess ae the (garbage-collected) hegp, and dso
“immorta” memory whose objects persst for the duration of an agpplication’s
execution. Another important specid case is a memory area that is used for
object alocations during the execution of a dynamicaly determined “scope’,
and which is automaticaly emptied at the end of the scope. The RTSJ defines
the concept of a “no-heap red-time thread” which is not adlowed to reference
the hegp; this redriction means that such a thread can safdly preempt the

Garbage Callector.

66

Synchronization and resource sharing. The RTSJ requires the implementation
to supply one or more mechanisms to avoid unbounded priority inverson, and
it defines two monitor control policies to meet this requirement: priority
inheritance and priority celing emulaion. The <specification dso defines
severd “wait free queues’ to dlow a no-heap red-time thread and a Basdine

Javathread to safely synchronize on shared objects.

Asynchrony. The RTSJ defines a generd event model based on the framework
found in the AWT and Java Beans. An event can be generated from software
or from an interrupt handler. Event handlers behave like threads and are
schedulable entities. The desgn is intended to be scdable to very large
numbers of events and event handlers (tens of thousands), dthough only a
smal number of handlers are expected to be active smultaneoudy. The RTSJ
dso defines a mechanism for asynchronous trandfer of control (ATC),
supporting common idioms such as timeout and mode change. The affected
code needs to explicitly permit ATC; thus code that is not written to be

asynchronoudy interruptible will work correctly.

Specifications made by the RTSJ group applicable to the NPS AUV software
developing team are introduced below.

a. Concurrency and Synchronization
I Schedulable Objects

The bass of this goproach to concurrency is the cdass

RedtimeThread, a subclass of Thread. One of the concerns of red-time programming is

to ensure the timey or predictable execution of sequences of machine ingructions.

Various scheduling schemes name these sequences of indructions differently. Typicaly
67

used names include threads, tasks, modules, and blocks. The RTSJ introduces the concept
of a schedulable object.

Any indance of any dass implementing the interface Schedulable
is a schedulable object and its scheduling and dispatching will be managed by the
indance of Scheduler to which it holds a reference. The RTSJ requires three classes that
ae schedulable objects; RealtimeThread, NoHespRedltimeThread, and
AsyncEventHandler.

The programmer can determine by analyss of the program, testing
the program on particular implementations, or both whether particular threads will dways
complete execution before a given timdiness condraint. This is the essence of red-time
progranming: the addition of tempora condrants to the correctness conditions for
computation. Basicaly ascheduler:

Have fixed priority preemptive, FIFO within priority
Does not dlow implicit modification of thread priority except for priority
inverson
Supports a minimum of 28 digtinct priority levels, above the 10 Basdine Java
levels
Provide isFeasible() method for feasible analys's
Assume priorities are assgned based on Rate Monotonic Andysis (RMA)
Can be replaced by other scheduling policies at runtime
The st of classes:
Allow the definition of schedulable objects.
Manage the assgnment of execution dligibility to schedulable objects.
Perform feasibility andyss for sets of schedulable objects.
Control the admission of new schedulable objects.

Manage the execution of ingances of the AsyncEventHandler and Redtime-

Thread classes.
68

Assign release characteristics to schedulable objects.
Assign execution digibility values to schedulable objects.

Define tempord containers used to enforce correct tempord behavior of
multiple schedulable objects.
b. Scheduling and Priorities

Meseting hard deadlines is one of the mos fundamenta requirements of a
red-time opeding sysem and is especidly important in safety-criticd systems.
Depending on the system and the thread, missing a deadline can be a criticd fault. Rate
monotonic andyss (RMA) is frequently used by system designers to andyze and predict
the timing behavior of sysems [9]. In doing S0, the system dedgner is relying on the
underlying operating system to provide fast and tempordly deterministic sysem services.
Not only must the designer understand how long it takes to execute the thread's code, but
dso any overhead associated with the threed must be determined. Overhead typicaly
includes context switch time, the time required to execute kernd system cdls, and the

overhead of interrupts and interrupt handlers firing and executing.

The RTSJ requires a base scheduler that is fixed-priority preemptive with
at kast 28 didtinct priority levels, above the 10 Core Java levels. An implementation must
map the 28 red-time priorities to diginct vaues, but the 10 non-real-time levels are not
necessarily digtinct. Congtructors for the RedtimeThread class dlow the programmer to
supply scheduling parameters (SchedulingParameters class), release parameters
(ReleaseParameters class), memory parameters (MemoryParameters class), a memory
area (MemoryArea class), and processng group parameters (Process ngGroupParameterx
class). The scheduling parameters characterize the thread's execution digibility (for

example, its priority). A red-time thread can have a priority in ether the red-time range
69

or the Basdine Java range. The reease parameters identify the red-time thread's
execution requirements and properties (whether it is periodic, aperiodic or sporadic).

C. Synchronization

Core Java uses monitors to perform synchronization. An unbounded
priority inverson in a thread synchronizing on a locked object can lead to missed
deadlines, and the RTSJ accordingly requires that the implementation supply one or more
monitor control policies to avoid this problem. By default the policy is priority
inheritance, but the RTSJ dso defines a priority celling emulation policy. Each policy can
be sdlected ether globaly or per-object and the choice can be modified a run time. An
implementation can supply a specidized form of priority caling emulation that prohibits
athread from blocking while holding alock; this avoids the need for mutua exclusons.

d. Memory Management

Memory management is a paticulaly important festure of the Java
programming environment. The RTSJ defines a memory dlocation and reclamation

specification that would:
be independent of any particular GC agorithm,

dlow the program to precisdy characterize a implemented GC dgorithm's
effect on the execution time, preemption, and dispatching of red-time Java

threads,

dlow the dlocation and reclamation of objects outsde of any interference by

any GC dgorithm.

The RTSJ introduces the concept of a memory area. A memory area

represents an area of memory that may be used for the dlocation of objects. Some
70

memory aress exis outsde of the hegp and place redtrictions on what the system and

garbage collector may do with objects alocated within. Objects in some memory aress

are never garbage collected; however, the garbage collector must be capable of scanning

these memory areas for references to any object within the hegp to preserve the integrity

of the hegp. There are four basic types of memory areas.

1.

Scoped memory: provides a mechanism for deding with a class of objects

that have a lifetime defined by syntactic scope (the lifetime of objects on

the heap).

Immorta memory: represents an area of memory containing objects that,
once alocated, exist until the end of the gpplication, i.e, the objects are

immortal.

Physcd memory: dlows objects to be created within specific physica
memory regions that have particular important charecteristics, such as

memory that has substantialy faster access.

Hesp memory: the Basdine Java hesp memory. Heap memory represents
an aea of memory that is the heap. The RTSJ does not change the
determinant of lifetime of objects on the hegp. The lifeime is dill
determined by vighility.

Garbage-collected memory hegps have dways been consdered an

obstacle to real-time programming due to the unpredictable latencies introduced by the

garbage collector. The RTSJ addresses this issue by providing severa extensions to the

memory model, which support memory management in a manner that does not interfere

71

with the ability of red-time code to provide determinisic behavior. This god is
accomplished by dlowing the dlocation of objects outsde of the garbage-collected heap
for both short-lived and long-lived objects.

e. Asynchrony

The RTS) aupplies two mechanisms rdevant to asynchronous
communication: asynchronous event handling, and asynchronous transfer of control.

I Asynchronous Event Handling

The asynchronous event facility comprisss two classes
AsyncEvent and AsyncEventHandler. An AsyncEvent object represents something thet
can happen, like a hardware interrupt, or a computed event like an arplane entering a
gpecified region. When one of these events occurs, which is indicated by the fire()
method being caled, the associated handleAsyncEvent() methods of ingtances of
AsyncEventHandler are scheduled and thus perform the required logic. An instance of

AsyncEvent managestwo things

the unblocking of handlers when the event isfired, and
the set of handlers associated with the event.

This set can be queried, have handlers added, or have handlers
removed. An indance of AsyncEventHandler can be thought of as something roughly
smilar to a thread. It is a Runnable object: when the event fires, the handleAsyncEvent()
methods of the asociated handlers are scheduled. What diginguishes an
AsyncEventHandler from a dmple Runndble is that an AsyncEventHandler has
asociated instances of ReleaseParameters, SchedulingParameters and
MemoryParameters that control the actuad execution of the handler once the associated
AsyncEvent is fired. When an event is fired, the handlers are executed asynchronoudy,
scheduled according to the associated ReleaseParameters and SchedulingParameters
objects, in a manner that looks like the handler has just been assigned to its own thread. It
is intended that the system can cope well with Stuations where there are large numbers of

ingances of AsyncEvent and AsyncEventHandler (tens of thousands). The number of
72

fired (in process) handlers is expected to be smdler. A gpecidized form of an
AsyncEvent is the Timer class, which represents an event whose occurrence is driven by
time. There are two forms of Timers: the OneShotTimer and the PeriodicTimer. Instances
of OneShotTimer fire once, a the specified time. Periodic timers fire off at the specified
time, and then periodicaly according to a specified interva. Timers are driven by Clock
objects. There is a specid Clock object, Clock.getRedtimeClock() that represents the
rea-time clock. The Clock class may be extended to represent other clocks the
underlying system might make available (such as a oft clock of some granularity).

f. Timeand Timers

The RTSJ provides severd ways to specify high-resolution (nanosecond

accuracy) time:
absolute time
rdative number of milliseconds and nanoseconds,

rationd time (a frequency, i.e. a number of occurrences of an event per

relaivetime).

In a relative time 64 bits (a long) are used for the nanoseconds, and 32 bits
(an int) for the millissconds. The rationd time class is desgned to smplify application
logic where a periodic thread needs to run a a given frequency. The implementation, and
not the programmer, needs to account for round-off eror in computing the interval
between release points. The time classes provide relevant condructors, arithmetic and
comparison methods, and utility operations. These classes are used in condructors for the
various release parameters classes. The RTSJ defines a default redl-time dock which can
be queried (for example to obtain the current time) and which is the bass for two kinds of
times a one-shot timer, and a periodic timer. Timer objects are ingtances of

asynchronous events, the programmer can register an asynchronous event handler with a
73

timer to obtain the desred behavior when the event is fired. A handler for a periodic
timer is dmilar to a red-time thread with periodic release parameters but is likdy to be
more efficient.

C. JAVA BOARD

While the portability of Java byte-code holds great apped, neither interpretation
nor Just-In-Time (JT) compilation is adequate for red-time embedded use. Different
companies darted to look into the development of a hardware device capable of running
byte-code directly and operating with a real-time operating sysem. A direct execution
Java micro-controllers, could accomplish such task. A Java board is a board with a
microprocessor onboard that contains dl the indruction st and dl the Java Virtud
Machine bytecodes, no Java interpreter or JT compiler is required. The space-efficient
indruction st can more than have the amount of code space required for a typica
gpplication, and has been designed for predictable Java bytecode execution.

1. alileaJ-100EVB

The alle Sysems al}100EVB Java sngle-board computer makes rea-time
embedded Java a promisng solution for embedded applications like the NPS AUV.
Based on the aJ}100 direct-execution Java microprocessor, the a}100EVB provides a

platform for the development of red-time embedded gpplications entirdly in Java

The a}100 ingruction sat architecture was designed with an embedded systems
focus, and thus maximizes the amount of runtime data that can be embedded. The aJ100
directly supports the Java thread modd in hardware. a}100 also defines a set of extended

indructions for physca hardware interfacing and other systems programming tasks.

The alle Sysems al}l100 is a second-generation direct execution Java
microprocessor. It is a compact, low-power board that is suited as a micro controller core

in gpplication areas such as automotive or robotics operations. al100 supports 32, 16, or

74

8 bit externd data buses, and provides a test interface via a connection through a paralld
port. With a}100, rea-time embedded developers can use the Java language, with its
proven productivity advantages, to produce applications that are as space and time
efficient as those written in languages such as C for other micro controller platforms.

a. aJ-100EVB Features

One of the unique features of he al100 is its hardware support for real-
time Java threads. a}100 implements the basc synchronization and thread scheduling
routines in microcode. There are severd benefits from this gpproach. For example, it
requires no Red-Time Opeaing Sysgem (RTOS) kernd, thus saving memory and
cregting a smdl footprint and low power consumption, a dedre characteridic in
autonomous vehicless The a}100 hardware supports periodic thread dispatching, and

aso implements priority inverson control.

The a}100EVB red-time Java sngle-board computer, bundled with Sun’s
Java 2 Micro Edition (2ME) Connected Limited Device Configuration (CLDC) Java-
based runtime system, optimizing application builder, and debugging tools provides a
complete solution for deveoping red-time and mobile networked embedded Java
goplications. Usng commercid Java IDEs, agpplication developers can creste standdone
Java applications totdly in Java with the performance and memory efficiency of systems

programmed in C and assembly.

The aJ100EVB is bundled with software to build and debug optimized
real-time embedded Java applications. Features of the aJ- 100EVB include:

32 bit Real-time low-power direct execution Java processor
VM bytecodes are netive indructions
Single and double precison floaing-point arithmetic

75

Native Java threading support

Hard real-time, multithreading kernd in hardware

Thread to thread yidld time of less than <1 msec.

Built-in determinigtic scheduling queues

Ethernet (10 Base-T)

1 MB SRAM

4 MB Flash

2 Serial Ports

LCD controller

4-wire restive touch screen controller

SPI Port with 3 (4 if touch screen not used) available sdlect lines
13 Genera-Purpose |/Os

Java Runtime software, including networking

Optimizing Linker/Application Builder

PC-based debugger; interfaces to aJ- 100EV B through the PC pardld port

Figure 28 shows alile's aJl00EVB Java board. Notice the Ethernet, serid

and pardld port connections.

Foom
i

aJ100EVB board

L}

Figure 28. aJI S

76

b. Programming in the aJ100EVB
Progranmming for the Java board follows the conventiond red-time
embedded applications but usng Java as the programming language. The traditiond
compilellink/load development cycle is the one used on this boad. For such
development cycle software tools are provided for the compilation and linking of the
program into the Java board. You need to have inddled the Java Development Kit
(JDK) 1.3.1 into the directory C\jdk1.3.1 before starting the process of linking.
i. Linking the Java code
Once the code is compiled usng traditiond compiletion like javac
in the command prompt or through a developing software, the classes mugt be linked for

embedded execution. alle Sysems provides a linker/loader tool cdls JemBuilder.
JemBuilder provides the user with aquick and easy way to link the code.

Basicdly the seps are:
1. Compile your classes
2. Launch JemBuilder and create a new Project
a CreateaJVvM
b. NametheMain class

c. Enter the classpath used during compilation phase, not the JDK
classpath

d. Add any drivers to the WM of any hardware resources that would be
managed by the created VM

e. Sdect theruntime classeslike Runtime_CLDC (Java Micro Edition)
3. Savethe project

4. Build the project.

77

A find screen will look like Figure 29.

1 @|) Frapstis. |

Do R ———
| dvey &t Tos Sap B2 100 57:50 FET DOic
- Figy riws_plds Veraden 9,15
<40 Orewis Lose Oergl fions a100EYES nEdgurakion

: : CharQuptFags Ak Sub-Toogeas .
-------- R T

¥ Wanioey Linking wisles creste IV

: EII'JT:CII‘H 1 eoababmzn peading wlesacs

8 Dot |1+ ¥EUEE patching cinsmea

NG R | --ATREE emducing cisazas

® Trtamg | |*o 54 mergen olass layos

® Mo Gl | - o%amman kmrgoh mcthed teonslikien

- . ..atmtus: velbing tacgat celocatably
. ..avEcus: 13AClng CACGT BEECIE

SLiNK compleced saqoeastully
ML TlRCE PEESORISE = 42
Runing Jsacey Sub-Fregres -..
Samcty 1.0
A1l valoes ape in hex. A1l sizes ape § Dytes

IV D: Excacnel SRAMH scacc = 42E0

IV 01 Excsireal ERAN cotal e - S0lBd
YT 0 EWGEEDA) ERAN JEOflER &1 = 2099
TV O: Extacoad FOR atsck = 5130c

JIVH D: Exeacoad FDH saza = 13044

I 01 Toral requesced ey apare = dsdid
YA 0 INGEEDAl BML ACALG = A00Fmn

(I D: Intwcrml FAN xice = BODG

natilized fRAH ECAET = 4360
IIGT1LLIESA PTRAH B10E = S[el

ety cospleted murcsrstully
Jersraring Load File fousliletTunorialsload, sod
Brild Finisred

FRl===C 1T |

Funbme: Fundima_gile Comi ad THHEVEE

Figure29. JemBuilder graphicd interface a the building phase

I Loading and Executing

After the build is finished, the load and execution of the code is
done by another software tool provided by alle Systems cdled Charade, Figure 30.
Basicdly after launching Charade:

1. Inthe main menu under Fle seect Execute

2. Sdect the load.sod created by &mBuilder. It will be located in the classpath
provided to JemBuilder in the building phase.

3. Runthe program by clicking Go

78

st M|
Fis B Opeoe Waedew [ewvies i Hep
[targue 2ot wemponsing J[atate Lias taer 93 ¢—ic ad-posiaa i1 o |
B e | B
g | |5top i | BoackTrece | Stepied Mext | [pws | Joadies | beckiiscs
It\us-:1: |"'::'
- el E.alj wiel -
an 29 2003 OieE8:4G
! L ol - 2001, DOHL. AlL mighrte raservail
mecre sy
w s fhrdedan
1 1
ik |
1 -
5
x|
3
E |
[Fietiesn | Clase u
| 3 & Thia Fir tlbl Agee) |HILIIPRER
s | (Beptv | ISepTe | Besknl A | Hah | A |
= =
Aairesh Cla
L L1 2 _p]

Figure 30. Charade loading and executing software tool

2. Imsys Cjip

The Cjip from Imsys AB located a Upplands Vasby, Sweden, is a processor for
embedded gpplications with low power consumption, featuring native Java byte code
execution as wdl as Assembler/C/C++ support. The Cjip COM Evduation Kit is
designed to be used for evauation and developing applications for the Cjip, usng Java or
C. It contans severd different communication peripheras, in addition to the Cjip
processor and memory. As the al-100EVB, a parald port cable connects it to the Imsys
Developer development sysem for program load and software debugging. The Imsys
Developer is an IDE for the Cjip processor family, in which you can peform dl
programming work. A source code editor, compilers of different types, assembler, linker,
debugger and other tools in a visud screen environment enables the developer to work

from asingle package. Some of the features of the evauation kit are:

79

Ethernet port for 10/100 Base-T

User port 10 connector with 10 user signals

Ports A, B and C on the Cjip are directly available in connectors
Pardld port for software debugging

Embedded Real- Time Operating System

The Cjip executes Java byte codes directly, rather than requiring a software Java
Virtud Machine (VM). The Cjip is fully compliant with Sun's PME specification with
support for CLDC.
D. SUMMARY

Red-Time Java is geting to be a redity. The gpecifications are out and
javax.redtime package has been in test for severa months now. With the numerous
advantages that Java offers, red-time software development will have another true object
oriented language with wide support. The use of Java as a language of choice has gone a
little bit further. With companies like alle Sysems in San Jose, Cdifornia, the
development of Java boards which provides a microprocessor capable of running byte-
code directly and operating with a red-time operdting sysem is a redity. This
combination would provide a fadt, reliable and economica way to create embedded
software for multiple gpplications using the Java language for red-time gpplications.

In this chapter an overview of Red-Time Java was presented. A description of
some specifications that could be of interest for the NPS AUV software developing team
was discussed. Viable candidate for Java hardware were presented. The alile ar
100EVB was discussed with more detailed as a sdection for the hardware incorporation
of Java board.

80

VI. EXECUTION JAVA SOURCE CODE DESCRIPTION

A. INTRODUCTION

The Java execution level code of the NPS AUV follows the same agorithms used
in the previous C code for computation of control parameters, flags and command parsing
and matching, and acts command. An in-depth description of these agorithms and
procedure are discussed by Michael L. Burnsin histhesis [Burns 96].

In this chapter a discusson of the flow and execution of the Java execution leve
code as well as the dynamics of the object-oriented gpproach of the different classes that
composed the entire software system. An important difference in the new code is the
dimination of globa variables for the tdemetry of the vehide and control varigbles.
Those variables are encapsulated in the respective classes an appropriate classfication
types have been assigned.

B. EXECUTION JAVA CODE PACKAGESAND CLASSES

The execution Java code is composed of 10 packages and 20 classes respectively:
Sense: All thereading of sensors
Decide Matching flags and commands
Act: Actuators commands
Vehide Tdemelry holding
Contral: Control calculation and control coefficients
Data Processng: Data processing and Kaman filter
Globals: Execution flags
Hardware: Any hardware-specific code
Input_Output: All write/read methods for files and user input

Network: Network communication between execution and dynamics as wdl
astectical leve

81

The man class is the executionjava under the mil.navy.npsauvAries.execution
package. The Javadoc in Appendix B gives a good documentation of the composition of
the execution Java code, its classes and the packages where they belong.

1 Sense

The Sense class contains dl the reed methods like read _dept h() and
read_headi ng(). The methods are closely related to physical devices onboard the
AUV. Since the target of this thess was firg the virtud world, most of the code in the
Sense class has been commented and left as C code. The applicable virtud world code

has been developed in Java and implemented.

2. Decide
a. Decide
The Decide class has two magjor methods,

mat ch_command_| i ne_fl ags() andmat ch_commands() . The purpose of the
method mat ch_conmmand _| i ne_fl ags() method is to take the parameters from the
command prompt, parse them, maich them againg a pre-defined set of flags and update
the respective flags accordingly. The method mat ch_commands() takes two
parameters, a command and the respective parameters associated with that command,
example postion 10 8 5. Based on that command passed, it will go through to try to
match it with a set of pre-defined set of commands. Based on the match a corresponding
action tekes place. For example, if the command was postion 10 8 5, the command
position matches and the action of setting the vehicles x y, and z postion will take place
intheformofvehi cl e. set _x(Doubl e. par seDoubl e(paraneters[1]))

respectively.

82

b. Parser

This dass is respongble for parsng misson commands from the misson
script file and to parse the telemetry string and update the telemetry based on that parsing.

3. Act

The Act class is responsible to act upon the decisons made on the decide class.
This dass has methods like command ruddery(double angle), which will indruct the
rudders to a specific angle. Severa methods ded with code that addresses the real world.
Such methods are implemented as skeleton, the source code for the red world has been
omitted. Severd of those classes provide methods to check the flag LOCATI ONLAB and
to take the appropriate action.

4. Control

This package has two classes, control and control_coefficients.

a Control

The Control dgorithms ae heat of dl cdculations and vehide
navigation. Control has dl the methods that compute control parameters for the
navigaion of the vehide. It is by far the most largest and complex class. It has dl the
control computational methods and the control loop method, which is like an cydlic
executive. The control loop methods must operate in a cyclic loop of less than 10 Hz in
order to have a good control feedback loop of the vehicle.

b. Control _Coefficients

This class has dl the control coefficients required in order to control the
vehicle. The condructor assgns a pre-defined set of coefficients cdculated for the
ARIES AUV. The coefficients in the class could be changed or a file could be created in

order to accommodate another type of AUV, The name of the file is
83

control.congantsingout and it must follow a predefined forma. Figure 31 shows the
required formet for thefile.
S. Input_Output
The input/output operations like writing and reading files are in this package.
a. 10
This dass is repongble for opening the misson script file, read the
commands and save them in a queue. It dso has a method to build the telemetry string
from the variables from the vehicle object. The control coefficients are read through a
method from this class The tdemelry is dso saved to a file usng a method from this
class.
b. Commands_Queue and List Node
The combination of these two classes will mantan the commands in a
queue and will pop, push, or print the commands from the queue. The List Node class is
gueue implementation using alink li.
6. Vehicle
Thevehide dass holds dl the telemetry information.

7. Networ k

a. Network _Connection

The network connection class is regponshle to establish communication
between the virtud world (dynamics), tacticd and the execution Java code. During this
communication, the execution Java code reads tdemetry information from dynamics as

well as send telemetry information to dynamics.

8. Globals
a. Execution_Flags

All the execution flags are hold in this class. The condructor initidized
al the flags to a pre-determine values. Through out the run time of the program this flags

are updated depending the state and conditions of the AUV.

0. Data_Processing
a. Kalman

Kaman filter processes are performed using the methods contain in this

10. Execution

This conditutes the main program. The integration of execution uses al the
classes by creating dl the required objects.

C. EXECUTION JAVA CODE INTEGRATION

The execution Java code starts with the import of al the dependent packages and
ingantiation of &l the classes that will be used. Some of the class ingantiations are done
by passng dready indantiated classes objects as parameters since these objects will be
used on those classes. Badcdly the same procedure or flow is followed from the
previous C code explained by Burns [Burns 96]. Since Javais an object-oriented

85

AUV execution level control algorithm coefficients 28 March 97
k_psi k_r k_v k_z k_w k_theta k_q
1.00 2.00 0.00 10.00 2.00 3.00 1.00
k_thruster_psi k_thruster_r k_thruster_rotate
0. 60 2.00 1.5
k_thruster_z k_thruster_w k_thruster_theta
30. 00 80. 00 15.0
k_propel | er _hover k_surge_hover k_propel |l er _current
200. 00 6000. 00 6600. 00
k_thruster_hover k_sway_hover k_thruster_current
8. 00 40. 00 40. 00
k_thruster_lateral standoff_distance
48. 00 2.50
* %k k k% * k k k%
* ok ok ko Do not modify any fornats above this line! * ok ok ko
*kk Kk *k *kk Kk *k

To nmodify contro

~user/execution> cp control.constants.input.auv

or

CONSTANTS auv

use the follow ng command in a script or

constants prior to running execution
control.constants.in

on the command | i ne:

put

Figure 31.

Required format for the file control.constants.input

86

language, differences in the dructure and flow of the program will be encountered. The
pasng of the ocommand prompt flags is done by cdling the
mat ch_command_| i ne_fl ags method from the decide <cas as
deci de. mat ch_command_Il i ne_fl ags(args). This method is bascdly the
same dgorithm as the previous C code. The misson script file is opened with the
method i 0. open_Fi |l e(i 0. AUVSCRI PTFI LENAME) and assgned to a dummy
vaiable conmandsBuf f er. After this the misson script is read usng the io object
method i 0. readM ssi onScri pt (queue, commandsBuf fer). Noticethat it
takes two parameters, the queue where the commands will be saved and a reference to the
misson script file that was just recently opened. The readM ssi onScri pt ()
method reads the misson script file line by line. When it encounters commented lines
identified by “*” or “#’ it disregard them. The method uses the queue in order to “push”
the command line from the file. At the dl the commands lines are saved in the queue. A
command line can be composed of a command and a set of parameters like posi ti on
80 10 5 or without a parameters like t hr ust er s- on. The parser object is created
and network communication are established. The network communication is done by
using the Java network socket. Badcaly a socket is created and input/output streams are
acquired. Something good about Java is the enforcing of exception handling. The entire
process just described is encapsulated in a try/caich block, which enforces the use of
exception handling code in order to recover from exceptions in the process of network

connections.

The control coefficients are read from the file contr ol . const ant s. i nput.
This file follows a spedific sdf-documented format as shown in Figure 30. Based of that
fomaa axd knowing tha the forma can not changed, the method
get _Control _Coefficients() from theio object reads the control coefficients.
The method basicaly reads the lines 9, 15, 21, 27, 33, and 39. The line read is then
parsed in the respective tokens and since a predefined order in the file exids the
respective control coefficient is set from the token just read.

The initid pogtion of the vehicle is then sent to the virtud world by the network
socket. Notice that the method from the network class

87

network.write Telenetry to dynam cs("position " +
aries.get_x() +" " + aries.get_y() + " " + aries.get_z() +
“\'n")

gets the vadues from the object vehicle. The condructor of the vehicle class has a default
vauesin which are the ones used for the initid postion.

The control loop method is cdled with cont rol . control _| oop(ST1000,
ST725, act, network, parser). Snce the goproach is the virtud world, the
control loop method omit the real world code by commented them. The update and use
of the tdemetry informetion is done by caling the respective “sat” and “get” methods of
the vehicle object.

D. SUMMARY

In this chapter the description of the components of the execution Java code was
done. The different packages and classes were briefly described. Since the algorithms
for control, parsng commands and flags, and acting are basicdly the same from the C
code, a generd description of the object oriented gpproach for the execution level using
Java was discussed in this chapter. Some of the differences from the C code and the Java
code is the use of a queue to storage the commands instead of keeping a file open and
reed from it until the end of the execution level program. The control coefficients are
kept in a class and an indantiation provides default constart coefficients as wdl as the
ability to read from a congantsfile.

88

VIl. EXECUTION JAVA CODE TESTING

A. INTRODUCTION

Teding software components is an essentid pat of the software developing
process. The man objective of testing is to prove that the software product as a
minimum meets a set of pre-established acceptance criteria under a prescribed set of
environmenta circumstances.

The testing of individud classes is somehow difficult for this project. The fact
that the C source code is avalable but without a debugger for the code make the
comparison of results extremdy difficult. An gpproach that might be done is to take the
step by step execution of the C code and with the features provided by the code of STEP
execution and TRACE options, a black box approach could be performed and compare

the results of what goesin and what comes out. Thistakestime and alot of patience,

Even though testing of software product is a very involved process which includes
the verification of the dedgn aganst the Software Requirements Specifications, the
purpose of this chapter is to give a brief description of how the component “debugging”
and the integration was performed.

B. COMPONENT TESTING

Code a little, test a little! Component or class testing basicaly is follows that
aoproach. Debugging works best from a runnable piece of code that gets only small
incremental changes before repested testing. With that idea in mind, the test of the
different classes was peformed as soon as the class was finish. Some classes had to wait
until the development of dependent classes were finished.

1. Vehicle Class

The vehicle class was tested and verified. The constructor successfully crestes a
vehicle object and dl the tdemetry variadles are initidized with the default vaues The

“sat” and “get” methods successfully update and return the respective variables.

89

2. Network _Connection Class

The network _connection class was tested and verified. The method
open_network_connection() successfully crestes a network socket and get
input and output streams for the virtud world communication. The communication of
tedlemetry between execution Jawva levd code and dynamics using
wite Telenmetry to_dynamcs(String telenetry_to_dynam cs) ad
read_Tel enetry_from dynam cs() successfully accomplished their purpose. A
successful telemetry string was wrritten to dynamics and read back fromit.

3. Execution_Flags

The Execution Hags class holds dl the execution flags ~ This dass was
implemented using dl public varigbles, therefore the access of the variables can be done
directly through the object and not using “set” or “get” methods. The use of the object
was tested with the access and setting of the flags always achieved.

4, Commands Queueand List_Node

The implementation of these two classes provides the queue object to store the
commands read from the misson scipt file The testing of the “push’, “pop’, and
“print” was done with results as expected.

5. Par ser

The parsing of telemetry was tested and results were as expected. The parse of
Mission script commands results were as expected.

6. 1O

This class has severd methods to test. The bui | d_tel emetry_string()

method tet resulted with a good tdemetry gring crested. The
90

build telemetry file_header () method successfully created a header for the
tedlemetry output filee The method get _Control Coefficients() successully
opened, read, and set the control coefficients read from the file control.constant.input.
The method open_Fil e() is therefore working correctly since it was used on the

get Control Coefficients() method.

The open_telemetry _save fil e() created the file were the telemetry of
the vehide will be swed evey 01 seconds successfully. The method
readM ssi oScri pt () readsthe misson script command and put the commands read
into the queue successfully. The method r ecor dDat a() usesthesave to fil e()
method and methods from network object in order to save the tdlemetry into the file
mission.output.telemetry and into dynamics.

7. Control_Coefficients

The Control_Coefficients class is like the Vehide class, a variadble holder. This
class holds dl the control coefficients that are in used in the execution level code
program. A “sat” and “get” methods are respongble for the setting and getting of the
coefficients. The testing of this class was conducted with successful results.

8. Decide

The Decide class is composed of three methods. The method
mat ch_command_| i ne_fl ags() successfully match the flags passed as parameters
from the command prompt and updates the Execution Flags object. The method
mat ch_commands() wastested with the commands:

position 12 80 5

speed 700

t hrusters-on
st andof f -di stance .75

91

waypoi nt 110 80 15
hover

course 90

wait 10

waypoi nt 110 95 15
hover

course 180

wait 10

waypoint 20 95 5
hover

course 270

wait 10

hover 12 80 5
course O

wait 10

speed 0O

thrugters-off

and successfully match the read command and update the respective information. More
test is needed for commands or flags conditions like TI MESTEP, TACTI CALPARSE,
WAI TUNTI L, REALTI ME and conditions where the sonars are indaled. Conditions for
the redl world are not tested.

0. Data_Processsing

The Data Processng class has miscdlaneous data processng methods like
normalization of vaues. A complete testing of the methods has not been done.

10. Sense

Mogt of the Sense class methods are related to the red world operations of the
AUV. Some portions of the code are commented out because of that reason. The
goplicable part for the virtud world are not completdly tested. Problems with the reading
of the rpms have not been solved. The rpms are showing as zero when it is reed and the
code automaticadly adjust them to 400. After recaiving the command of speed-700 and

thrusters-on, the rpms remains on 400 regardless of the command just read.

92

11. Ac

The Act class methods cover a great ded the red world. The code for the red
world has been omitted from these methods. Methods like initidization of AD cards and
DA cads, if the flag LOCATI ONLAB is true, a ample return is executed. A complete
test of this methods must be performed.

12. Kalman

Even though that the dgorithm of the methods in this class are the same as the C
code and the trandation to Java is rdatively the same, the testing of these methods must
be performed in order to have a good assurance of the functiondity.

13. ST725 sonar

This dass has only one method which is control _ST725_sonar (). It has
not been tested. Some variables have been commented out since no usage where found
from the trandation of the C code.

14. ST1000 sonar

The ST1000 sonar class is under the same Stuation as the ST725 sonar class.
The detall testing of the class must be performed.

15. Contral

The Control class is the biggest class and most complex one. The most important
method is the control | oop(). This mehod is like a cydic executive which
provides feedback to the operations of the vehicde. All the methods have been
implemented but not tested. @~ A point of obsarvaion is tha in the method
conpute_follow ight controls() a cal to methods
Render Cal cul ation(), Savelnmage(), Cal cul atePsiLightReference(),

and Cal cul at eCspeedDpsi Dz() could not be found in the entire C code. The
93

commented lines were left in the Java code as reference. In the control | oop()
method a portion of the code was commented in the pat where CLReaddnod()
gopears. This method could not be found in the C source code. The REALTI ME flag
portion of the code was commented. The implementation in the C code uses a data
dructure that access the cpu clock directly. The implementation in Java needs to be
figured out.

16. Execution

The Execution class conditutes the main method for the entire software package.
Bascdly integrates dl the classes. It darts with the ingtantiation of the classes which it
does it as expected. The same methodology or flow from the C code is followed in the
implementation of the Execution class. Some parts of the C code are not implemented
yet like the EMAI L part and LOOPFOREVER where it performs back-ups and restart the
misson. The overdl performance is as expected. Detall testing must be done with dl the

poss ble combination of commands and flags.

Looking the execution leve Java code as an entire package, the program runs
with some logicd erors. The sending of the tdlemetry to dynamics and to the file looks
to be having problems after a refactoring procedure performed in the code. After sending
the initid pogtion to dynamics, the reading of the telemetry from dynamics on the 0.1
seconds is done correctly. Execution perform al the required cdculations, build the
telemetry for 0.2 seconds and send it to dynamics. When it is time to read from dynamics
again it reads a telemetry string for 0.1 seconds, the same one read previoudy, something
that was not happening before the refactoring. Table 5 shows portion of the telemetry

output file written by the execution Java code.

94

t X y z
auv_state 0 12 80 5
auv_state 0.1 12 80 5
auv_state 0.2 12 80 5
auv_state 0.2 12. 0011 80 5
auv_state 0.3 12. 0022 80 5
auv_state 0.3 12. 0032 80 5
auv_state 0.4 12. 0054 80 5
auv_state 0.3 12. 0032 80 5
auv_state 0.4 12. 0054 80 5
auv_state 0.4 12. 0063 80 5
auv_state 0.5 12. 0096 80 5
auv_state 0.4 12. 0063 80 5

Table 5. Portion of misson.output.telemetry file written by execution Java
code

Notice that at 0.4 seconds it seems to repesat the telemetry line. Table 6 shows the
portion of the same file but this time written by the C code. Both files correspond to the

same misson script file

t X y z
uvw_ st ate 0 12 80 5
uvw st ate 0.1 12 80 5
uvw_ st ate 0.2 12. 001 80 5.001
uvw st ate 0.3 12. 003 80 5. 002
uvw st ate 0.4 12. 007 80 5. 005
uvw_ st ate 0.5 12. 011 80 5. 008
uvw st ate 0.6 12. 016 80 5.012
uvw st ate 0.7 12. 023 80 5.017

Table 6. Portion of misson.outputtdemetry file written by execution C
code

As shown in table 5, the integration of the execution Java code needs o be tested
in the logic flow of the operations. Even though no syntax errors are found, logica error

can be noticed, the most difficult kind of errors to be found.

95

C. SUMMARY

In this chapter the overal integration and teding of the different classes was
discussed. It was found that more extensve and detall testing are needed for some
classes. The integration of dl the classes to compose the execution Java code has some
logica or integration errors. These errors most likely come from the control, act, or sense

class.

96

VIII. CONCLUSIONSAND RECOMMENDATIONSFOR
FUTURE WORK

A. INTRODUCTION

The main purpose of this work was to develop execution level Java code for the
NPS AUV. The approach taken was to start with the virtud world first and continue the
work by extending it to the red world. A high level UML use cases, sequence diagrams,
conceptuad model and architecture views were developed. A Java source code has been
crested and the continue development, testing and refactoring of such code is a

continuous process.

An indirect god of this thess was to show a sysematic software engineering
process and emphasize the important of such gpproach in the development of software for

complex systems.

In this chapter, thess gods and results are evduated. The problem statement will
be addressed. Findly, future work will be recommended.

B. RESEARCH CONCLUSIONS
1. Arethe GoalsMet?

In Chapter 111 the gods for this thess were stated. The gods of building a Java
based execution level code for the NPS AUV capable of being interchangesble with the
red and virtud world without any effect and to prepare the software for the Red-Time
Java migration and Java Board integration are partidly met. The firsd phase of the project
was met, the cregtion of a Java execution level code for the virtua world. Even though
more testing and refactoring is required, the foundation has been laid. The beginning of a
fully working source code of the execution level code in Java has been developed.
Research into the Java extenson for Red-Time has been conducted and explained in
Chapter V. Two Java boards have been purchased for the second phase of the project, the

integration of the software into the Java board and the physical devices of the AUV.

97

2. Execution Java Code

The complexity of the execution levd C code in terms of software engineering
procedures made understanding very difficult. The use of globd varigbles complicated
the gtuaion even further since the track of the variables and the updates of them was not
very clear. A different gpproach was followed. An object-oriented andyss was
performed and the identification of objects and the creation of classes was performed. A
good underganding of the requirements and legacy code is crucid for the success of a

complex project like this one.

A good implementation of the execution levdl code was cregied in the Java
language. The features of Java provided an excdlent way to develop a true object-
oriented approach and implementation.

3. Real-Time Java

Red-Time Java was discussed in chapter V. The exising Java core, even though
it addresses some red-time issues like timed related methods, some issues like memory
management, priority, schedulability, and timing issues were not gppropriate for hard
red-time sydems. Two different groups <ated to developed the Red-Time
Specification for Java (RTSJ) were those issues mentioned above and others are covered
and discussed. The Java extenson javax.redtime is a product that implements dl the
requirements stated in the RTSJ. With this extenson for the core Java red-time
development can be done. The use of a regular VM can be used but is not assured to
comply with the red-time requirements. A specid VM is under development which
could provide red-time support and regular core Java code execution without any

difference.

98

4. Java Board

In Chapter V the discussion of the Java board was done. Two Java boards aJ
100EVB from alle Sysems were purchased in order to continue the trangtion of the
execution level code to Java usng a red-time environment. A basc discusson of the

Java board and programming procedure was performed.

Java boards demondtrated a feasble way to develop software for red-time
systems.
C. FUTURE WORK RECOMMENDATIONS

This thess edablished the foundation for future work in red-time software usng
the object oriented language Java and Java boards for autonomous underwater vehicles,

or other robotic systems using a systematic software engineering gpproach.

Additiond work is dill required in the area of testing, refactoring and continue
development of the source code developed through this thess. The verification of the
integration of the different classes that compose the execution Java code must be

performed as well as in-depth test of the classes.

The code for the integration with the red world must be performed. The use of a
package like javax.comm. where it provides classes for access to parale and serid ports
provides a useful way to communicate with the different sensors and actuators of the

vehicle

Findly the integration of the Java code into the Java board must be performed.
Since Java boards offer RTOS, the usage of the package javax.redtime must be use as
part of the Java execution level code. Interface with the sensors and actuators must be

done and extensve testing must be perform.
99

D. SUMMARY

In this chapter concluson and future work recommendations were discussed. The
gods of creating a Java based execution level code, a red-time gpproach and discussion

of Java Red-Time, and introduction of the Java board were met.

Java Red-Time is a redity. The features of the language as “write once, run
anywhere® can be teken advantage in the red-time development for systems. With a
fully object oriented programming language as Java, a strong support for proper software
enginegring techniques like software reuse, the time for developing software is reduce as

wdll as codt.

The use of Java boards as platform for the red-time environment provides a dable
environment for software development. The fact tha a RTOS is embedded on the
microprocessor reduce overhead, moreover, the direct execution of bytecode into the Java

jprocessor.

100

APPENDIX A EXECUTION JAVA SOURCE CODE

A. SENSE.JAVA
/*

Title: Sense.java
Description: Thisclassisresponsible for the sensing of devices
Date: 23 May, 2002

Project: Execution Java Software for Autonomous Underwater Vehicle,
Naval Postgraduate School, Monterey, CA
Compiler: JDK 131
Author: Miguel A. Ayala
Version: 10
*/

package mil.navy.nps.auvAries.execution.sense,

import mil.navy.nps.auvAries.execution.globals.Execution_Flags;

import mil.navy.nps.auvAries.execution.vehicle.Vehicle;

import mil.navy.nps.auvAries.execution.act.Act;

import mil.navy.nps.auvAries.execution.hardware AD_cards;

import mil.navy .nps.auvAries.execution.control.Control;

import mil.navy.nps.auvAries.execution.data_processing.Data_Processing;
import mil.navy.nps.auvAries.execution.input_output.Fmt;

/**

* Thisclassisresponsible for the sensing of devices
*/

public class Sense {

Execution_Flagsflags;
Vehiclevehicle;

Act act;

AD_cards cards;
Control control;

Data Processing data_Processing;
int pulse;
doublelocal_stbd rpm;
doubleloca_port_rpm;
double depth_cell_bias;
double z_val0;

double angle;
doublerate;

int val;

double pitch_0;

double speed_per_rpm;
/I use by read speed
static int old_count1;
static int old_count2;
static boolean start;

int count;

/I unsigned char |obyte,hibyte;

101

double freq;

double avg_speed,;

fina int PORT_PROP=0;

find int STBD_PROP =1;

fina int BOW_VERTICAL = 2;
find int BOW_LATERAL =3;
final int STERN_VERTICAL =4;
find int STERN_LATERAL =5;
double value;

double rpm;

double battery voltage;

double motor_gyro_battery voltage;
double lesk;

/* *

* Sense Class cnostructor.

* @param: Vehicle object reference and Data_Processing object reference
* @return: None

*/

public Sense(V ehicle vehicleObj, Data_Processing Data_ProcessingRef) {

vehicle = vehicleOby;

data_Processing = Data_ProcessingRef;

pulse=0;

local_stbd rpm=0.0;

rpom = 0.0;

vaue=0.0;

depth_cell_bias=0.0;

z vad0=0.0;

angle=0.0;

rate = 0.0;

va =0;

speed_per_rpm=0.0;

/I use by read speed

old_countl =0;

old_count2 =0;

start = true;

count = 0,

/I unsigned char lobyte,hibyte;

freq=0.0;

avg_speed =0.0;

battery_voltage = 0.0;
motor_gyro_battery voltage = 0.0;
leak = 0.0;

}

/**

* Reads rpm from STBD_PROP

* @param: None

* @return: double

*/

public doubleread_stbd_motor_rpm() { // VERIFIED
if (flagsTRACE && flags.DISPLAY SCREEN) {

System.out.printin("[start read _stbd motor_rpm ()]\n");

}

102

/*

*/

/*

local_stbd rpm = read_motor(STBD_PROP);
if (flags. TRACE & & flags.DISPLAY SCREEN) {
System.out.printIn("[finish read_stbd_motor_rpm () returns” +
local_stbd_rpm + "\n");
}

return (local_stbd_rpm);
} I/ endread_stbd _motor_rpm ()

/* *

* Returns rpm from single propellor or thruster

* @param: None

* @return: double

*/

public double read_motor(int motor) { // VERIFIED

motor =0 Left Propeller PORT_PROP RPM
1 Right Propeller STBD_PROP RPM
2 Bow Vertical Thruster BOW_VERTICAL volts
3 Bow Lateral Thruster STERN_VERTICAL volts
4 Stern Vertical Thruster BOW_LATERAL volts
5 SternLateral Thruster STERN_LATERAL volts

int count;
doublefreq, rps;
/1 unsigned char lobyte,hibyte;

if (flags TRACE && flags.DISPLAY SCREEN) {
System.out.printin(*[start read_motor ()]\n");

}

if (flagsLOCATIONLAB ==false) { // in water
System.out.printin("IN WATER CALCULATIONS");

switch (motor) {

case PORT_PROP:
/I Sel Cntr 1 HOLD Reg. Card 3
write timla(3, tim_la control_reg, 17);
lobyte=read timlacl (3,tim_la data reg);
hibyte = read_timlacl (3,tim_1a data reg);
count = (int) (256 * hibyte) + (int) lobyte;
if (v_dis<512){
count = -count; // Account for Direction of Rot.

break;

case STBD_PROP.

// Sel Cntr 2HOLD Reg. Card 3
write_timla(3, tim_la control_reg, 18);
lobyte=read timlacl (3, tim_la data reg);
hibyte=read timlacl (3, tim_1la data reg);
count = (int) (256 * hibyte) + (int) lobyte;
if(v_drs<512){

count = -count; // Account for Direction of Rot.

}
break;

103

case BOW_VERTICAL:
/I Sl Cntr 1 HOLD Reg. Card 2
write_timla(2, tim_l1a control_reg, 17);
lobyte =read_timlacl (2,tim_1a data reg);
hibyte = read_timlacl (2, tim_la data reg);
count = (int) (256 * hibyte) + (int) lobyte;
if(v_dbvt<512){
count = -count; // Account for Direction of Rot.
}

break;

case STERN_VERTICAL:
/I Sel Cntr 2 HOLD Reg. Card 2
write timla(2, tim_1a control_reg, 18);
lobyte =read_timlacl (2,tim_la data reg);
hibyte =read_timlacl (2, tim_la data reg);
count = (int) (256 * hibyte) + (int) lobyte;
if(v_dblt<512){
count = -count; // Account for Direction of Rot.

}
break;

case BOW_LATERAL:
/I Sel Cntr 3HOLD Reg. Card 2
write timla(2, tim_1a control_reg, 19);
lobyte =read_timlacl (2, tim_la data reg);
hibyte = read_timlacl (2, tim_1la data reg);
count = (int) (256 * hibyte) + (int) lobyte;
if (v_dsvt<512){
count = -count; // Account for Direction of Rot.

}
break;

case STERN_LATERAL:
// Sel Cntr 4 HOLD Reg. Card 2

write_timla(2, tim_1a control_reg, 20);

lobyte=read timlacl (2, tim_la data reg);
hibyte=read timlacl (2,tim_la data reg);
count = (int) (256 * hibyte) + (int) lobyte;
if (v_ddt<512){

count = -count; // Account for Direction of Rot.

}
break;

default:
if (flags.DISPLAY SCREEN) {
System.out.println ("[read_motor () error:
illegal motor value" + motor + "J\n");

}
break;

}
if (count!=0){

/I F1 (1 Mhz) The4.0isinthere
104

*/

freq=(1.0/count) * 4.0* Math.pow(10.0, 6.0);
/I as ascale factor from God

}
else{

/I Sensor Not Counting
freq=0.0;
}

// 500 Counts Per Rev

rps=(freq/500.0);

if((Math.abs(rps) < 1.0) || (Math.abs(rps) > 1000.0)) {
rps=0.0;

}

if (flags TRACE && flagsDISPLAY SCREEN) {
System.out.println ("[finish read_motor () returns™

+rps+"\n");
}
value = rps* 60.0; // convert from per-seconds to per-minutes
}
else{ // LOCATIONLAB ==true
vaue=rpm;
}
return value;
}
/* *
* Returns rpm frpm Port prop
* @param: None
* @return: double
*/
public doubleread port_motor_rpm() { // VERIFIED
int pulse;

local_port_rpm = 700;

if (flags TRACE && flags.DISPLAY SCREEN) {
System.out.printin("[start read_port_motor_rpm ()]\n");

}

local_port_rpm = read_motor(PORT_PROP);

if (flagsTRACE && flags.DISPLAY SCREEN) {
System.out.printin("[finish read_port_motor_rpm () returns™

+local_port_rpm+"J\n");
}
return (local_port_rpm);
} /I endread_port_motor_rpm ()

/* *
* Return depth in feet
* @param: None
* @return: double
*/
public doubleread_depth() { // VERIFIED
intva =0;
double new_z = 0.0; // zz in dave's execf.c code/

105

/*

*/

double z_offset = 0.0;
if (flags TRACE && flags.DISPLAY SCREEN) {
System.out.printin("\n[start read_depth ()]");

}
if (flagsLOCATIONLAB && flags DEADRECKON) {
new_z = control.z_command,;

}
elseif (flags LOCATIONLAB) {
new_z = vehicle.get_z(); // no change, use virtual world value

}
else{ // in-water

/l val = adc1(DEPTH_CELL_CH); // Channdl 7

/10.0728=0.0182* 4.0
/I Since A/D now has 0-1023 range instead of 0-4095
/I new_z = 0.0728*((double) (val - z_val0)) + z_offset;

/I adc2 card has 0 - 4095 resolution
val = get_adc2 (cards. DEPTH_CELL_CH, 0);
new_z=0.0182* ((double) (val -z val0)) + z_offset;

/[Calibration for Signal Amp
/Inew_z = 0.0034285* ((double) (z_val0 - val)) + z_offset;

System.out.printin("IN WATER CALCULATIONS");

}
if (flagsTRACE && flags.DISPLAY SCREEN) {
System.out.println("\n[finish read_depth (), returns™
+new_z+"\n");
}

return (new_z + depth_cell_bias);

} // end read_depth ()

/**

* Returns yaw posture in world coordinates in degrees
* @param: None

* @return: double

*/

public doubleread _psi() { // VERIFIED

/I unsigned short psi_bit;

/I intpsi_bit int,psi_bit_old_int,delta psi_bit;

double tpi;

11

if (flags TRACE && flags.DISPLAY SCREEN) {
System.out.printin("[start read_psi ()]\n");

}
if (flagsLOCATIONLAB && flags DEADRECKON) {
angle = control.psi_command;

}
eseif (flagsLOCATIONLAB) {
/I no change, use virtual world value
vehicle.set_psi(vehicle.get_psi());
angle = vehicle.get_psi(); // set up for function return

106

/*

*/

}

else{ // in-water
System.out.printin("IN WATER CALCULATIONS");

psi_bit = Read_PortAB (OxFFF00700);
psi_bit &= Ox3FFF;
psi_bit_int = psi_hit;
psi_bhit_old int =psi_bit_old;

delta psi_bit = psi_bhit_int- psi_bit_old int;
psi_bit_old = psi_bhit;

if (Math.abs (delta_psi_bit) > 10000) {

wrap_count = wrap_count - delta_psi_bit / Math.abs (delta_psi_bit);
}

angle = start_psi + Math.toDegrees(((read_heading () -
dg_offset + 2.0 * Math.PI ((double) wrap_count))));

if (Math.abs(angle) < 0.0001) {
angle=0.0;
}

[printf ("%f %f %f %d %d\n”,
I angle,read_heading (),dg_offset,wrap_count,psi_bit);

}
if (flagsTRACE && flags.DISPLAY SCREEN) {
System.out.printin("[finishread_psi () returns™ + angle + " J\n");
}
return (data_Processing.normalize(angle));
} I/ endread_psi ()

/**
* Returnsroll ratein Degrees/sec
* @param: None
* @return: double
*/
public doubleread_roll_rate_gyro() { // VERIFIED
if (flags TRACE & & flags.DISPLAY SCREEN) {
System.out.printin("[start read_roll_rate_gyro ()]\n");

}
if (flagsLOCATIONLAB) {
rate = vehicle.get_p(); // no change, use virtual world value
if (Math.abs(rate) < 0.0001) {
rate=0.0;
}
}

else{ // in-water
System.out.printin("IN WATER CALCULATIONS");

* val = get_adc2 (cards.ROLL_RATE_CH, 0);
/I Next two lines from old method
/I val =val >>2; /] Quick fix for new res
/I rate=(roll_rate 0/3.2113-.31062* vd) / 57.295779;
rate = Math.toDegrees (0.07785* (roll_rate 0-va)/57.295779);

107

if (Math.abs(rate) <0.0001) {
rate=0.0;
}

*/
}
rate = data_Processing.normalize2(rate);
if (flags TRACE & & flags.DISPLAY SCREEN) {
System.out.printin("[finish read_roll_rate _gyro () returns" + rate

+"\n");

}
return (rate);

}

/**

* Returns pitch rate in Degrees/sec

* @param: None

* @return: double

*/

public doubleread pitch_rate gyro() { // VERIFIED
va =0,

if (flags TRACE & & flags.DISPLAY SCREEN) {
System.out.printin("[start read_pitch_rate _gyro ()]\n");

}

if (flags LOCATIONLAB) {

rate = vehicle.get_q(); // no change, use virtual world value
if (Math.abs(rate) < 0.0001) {
rate=0.0;
}
}
else{ // in-water
System.out.printin("IN WATER CALCULATIONS");

I* val = get_adc2 (cards.PITCH_RATE CH, 0);
/I Next two lines from old method
[l va =val >> 2;*/

/* Quick fix for new res
Il rate = (pitch_rate 0/ 13.69399 - .0730001 * va) / 57.295779;

rate = Math.toDegrees(0.01825 * (pitch_rate 0 - va)/57.295779);
if (Math.abs (rate) <0.0001) {
rate = 0.0;
}
*/

}

rate = data_Processing.normalize2(rate);

if (flags TRACE & & flags.DISPLAY SCREEN) {
System.out.printin("[finish read_pitch_rate_gyro () returns" + rate

+"]\n");
}

return (rate);
} // end read_pitch_rate_gyro ()
/* *

* Return yaw ratein degrees/sec
* @param: None
* @return: double

108

*/
public double read_yaw_rate gyro() { // VERIFIED
if (flags TRACE & & flags.DISPLAY SCREEN) {

System.out.printin("[start read _yaw_rate_gyro ()]\n");
}
if (flags LOCATIONLAB) {
rate = vehicle.get_r(); // no change, use virtual world value
if (Math.abs(rate) < 0.0001) {
rate=0.0;
}
}
else{ // in-water
System.out.printin("IN WATER CALCULATIONS");

[* /I Below for adcl Card
/I val = adcl(YAW_RATE_CH); // Channel 10
Il rate=2.78* (((double) yaw_rate 0) / 13.653216 - 0.0732362
* ((double) val))/ 57.295779;

val = get_adc2(cardsYAW_RATE CH, 0);
/I Next two lines from old method
// val =va >> 2; /] Quick fix for new res
/I rate=2.78* (yaw_rate 0/ 13.653216 - .0732362 * vd) / 57.295779,
rate = Math.toDegrees (0.0509 * (yaw_rate 0-va)/57.295779);
if (Math.abs (rate) < 0.0001){
rate=0.0;
}
*/
}
rate = data_Processing.normalize2(rate);
if (flags TRACE && flags.DISPLAY SCREEN) {
System.out.printin("[finishread _yaw_rate gyro () returns" + rate

+"\n");

}
return (rate);

} I/ endread_yaw_rate_gyro ()

/**

* Return roll anglesin degrees

* @param: None

* @return: double

*/

public doubleread roll_angle() { // VERIFIED
intva =0;

doubleangle=0.0;
if (flags TRACE & & flags.DISPLAY SCREEN) {
System.out.printin("[start read_roll_angle)]\n");

}
if (flags. LOCATIONLAB) {
angle = vehicle.get_phi(); // no change, use virtual world value
if (Math.abs(angle) < 0.0001) {
angle=0.0;
}
}

ese{ //in-water
System.out.printin("IN WATER CALCULATION");

109

/*

*/

/*

*/

val = get_adc2 (cards.ROLL_ANGLE CH, 0);
/I Next three lines from old method
/I val =val >> 2; |/ Quick fix for new res
/I convert to radians
/I angle=((516.578 - va) / 5.7572) | 57.295779;
/l angle=(-.1737 * va + .1737 * roll_0)/ 57.295779;
angle=0.043425* (roll_0-va)/57.295779;
if (Math.abs (angle) <0.0001) {
angle=0.0;
}

}
angle = data_Processing.normalize2(angle);
if (flags TRACE && flags.DISPLAY SCREEN) {
System.out.printin(*[finish read_roll_angle () returns” + angle
+"\n");
}

return (angle);

} /1 end of read_roll_angle()

/**

* Return pitch anglesin degrees

* @param: None

* @return: double

*/

public doubleread_pitch_angle() { // VERIFIED

intva =0;
double angle =0.0;
if (flagsTRACE && flags.DISPLAY SCREEN) {
System.out.printin("[start read pitch_angle ()]\n");
}
if (flagsLOCATIONLAB) {
angle = vehicle.get_theta(); // no change, use virtual world value
if (Math.abs(angle) < 0.0001) {
angle=0.0;
}
}
else{ // in-water
System.out.printin("IN WATER CALCULATIONS");

val = get_adc? (cards.PITCH_ANGLE_CH, 0);
I/l Next three lines from old method
/[val =va >>2; /I Quick fix for new res
[/Iconvert to radians
/l angle=((520.153 - val) / 8.340) / 57.295779;
/l angle=((-.1199* val +.1199 * pitch 0)/57.295779);
angle = Math.toDegrees (0.02997 * (pitch_0-va) /57.295779);
if (Math.abs (angle) <0.0001){
angle=0.0;
}

}

angle = data_Processing.normalize2(angle);

if (flags TRACE & & flags.DISPLAY SCREEN) {
System.out.printin("[finish read_pitch_angle () returns” + angle

110

/*

*/

}

+7)
)

return (angle);

/**

* Return heading angle with respect to local magnetic north in radians
* from directiona gyro

* @param: None

* @return: double

*/

public double read_heading() { // VERIFIED

/I unsigned short dg_bit;
double angle =0.0;
if (flags TRACE && flags.DISPLAY SCREEN) {
System.out.printin("[start read_heading ()]\n");
}
if (flagsLOCATIONLAB && (flags DEADRECKON ==falsg)) {
angle = vehicle.get_psi();
if (Math.abs(angle) < 0.0001) {
angle=0.0;
}
}
eseif (flagsLOCATIONLAB & & flags DEADRECKON) {
angle = control.psi_command,;
if (Math.abs(angle) < 0.0001) {
angle=0.0;
}
}
else{ // in-water
System.out.printin("IN WATER CALCULATIONS");

// dg_bit = Read_PortAB(MFI_BASE)

dg_bit = Read_PortAB (OxFFF00700); // why not a#define here? <
// dg_hit = 10000;

dg_bit &= Ox3FFF;

angle=(3.8350e-4) * ((double) dg_bhit);
/I printf("Angle = %f %d\n",angle, dg_bit);
/l'if (fabs(angle) < 0.001) angle=0.0;//

}
angle = data_Processing.normalize(angle);
if (flagsTRACE && flags.DISPLAY SCREEN) {
System.out.printin("[finish read_heading () returns" + angle
+"]\n");
}

return (angle);

/**

* Return speed and filter it
* @param: None

* @return: double

*/

public double read speed() { // VERIFIED

111

if (flags TRACE && flagsDISPLAY SCREEN) {
Syste<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>